Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.112166 | DOI Listing |
Am J Clin Pathol
January 2025
Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
Objectives: Immune checkpoint inhibitors have revolutionized treatment of platinum-refractory advanced bladder cancer, offering hope where options are limited. Response varies, however, influenced by factors such as the tumor's immune microenvironment and prior therapy. Muscle-invasive bladder cancer (MIBC) is stratified into molecular subtypes, with distinct clinicopathologic features affecting prognosis and treatment.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University Taoyuan 33305, Taiwan.
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer, and immune checkpoint inhibitors (ICIs) have shown efficacy in its treatment. The combination of chemotherapy and ICIs represents a new trend in the standard care for metastatic NPC. In this study, we aim to clarify the immune cell profile and related prognostic factors in the ICI-based treatment of metastatic NPC.
View Article and Find Full Text PDFWe seek to establish a parsimonious mathematical framework for understanding the interaction and dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations describing changes in tumor size (growth and regression) under the influence of five cocktails of treatments. Model calibration relies on three tumor volume measurements obtained over a 14-day period in a genetically engineered pancreatic cancer model (KrasLSLG12D-Trp53LSLR172H-Pdx1-Cre).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFZhongguo Fei Ai Za Zhi
November 2024
Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Background: Primary pulmonary lymphoepithelial carcinoma (PPLEC) is a rare form of lung malignancy, accounting for only 0.7% of all lung cancers. It is currently classified as a distinct subtype within squamous cell carcinomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!