Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pscychresns.2024.111822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!