Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a combination of whey protein (hydrophilic coating) and polydopamine (crosslinking agent) was used to improve the stability and functionality of quercetin-loaded zein nanoparticles. There are two key benefits of the core-shell nanoparticles formed. First, the ability of the polydopamine to bind to both zein and whey protein facilitates the formation of a stable core-shell structure, thereby protecting quercetin from any pro-oxidants in the aqueous surroundings. Second, neutral and hydrophilic whey proteins were used for the surface coating of the nanoparticles to further enhance the sustained and slow release of quercetin, facilitating its sustained release into the body at a slow and steady rate. The results of this study will promote the innovative development of precise nutritional delivery systems for zein and provide a theoretical basis for the design and development of dietary supplements based on hydrophobic food nutrient molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.139477 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!