Inclusion of reeling wastewater-derived sericin peptides in high-protein nutrition bars for antihardening and storage stability.

Food Chem

School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. Electronic address:

Published: September 2024

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139441DOI Listing

Publication Analysis

Top Keywords

reeling wastewater-derived
8
wastewater-derived sericin
8
high-protein nutrition
8
nutrition bars
8
food protein
8
protein resources
8
inclusion reeling
4
sericin
4
sericin peptides
4
peptides high-protein
4

Similar Publications

Inclusion of reeling wastewater-derived sericin peptides in high-protein nutrition bars for antihardening and storage stability.

Food Chem

September 2024

School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. Electronic address:

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!