This study aimed to experimentally compare the uric acid-lowering effect and renal protection of Yiqing Fang in a rat model of hyperuricemia. Additionally, we used network pharmacology to predict the potential active components, targets, and pathways of Yiqing Fang. Male SD rats were randomly divided into control, model, Yiqing Fang, allopurinol, and probenecid groups. Serum creatinine (Scr), blood urea nitrogen (BUN), serum uric acid (UA), alanine transaminase (ALT), complete blood count, and urinary NAG enzyme levels were measured. Standard pathology and electron microscopy samples were prepared from the left kidney to observe renal pathological changes, renal fibrosis, and collagen III expression levels. In addition, we employed network pharmacology to investigate the molecular mechanisms and pathways of Yiqing Fang. The Yiqing Fang group showed significantly lower levels of Scr, BUN, UA, ALT, urinary NAG enzyme, complete blood count, and liver function tests compared to the model group (P < 0.05). Furthermore, both the Yiqing Fang and allopurinol groups exhibited significant reductions in renal pathological changes compared to the model group, along with decreased expression of collagen III. Network pharmacology analysis identified a total of 27 specific sites related to hyperuricemia. The main active components were predicted to include quercetin, berberine, beta-sitosterol, epimedin C, and dioscin. The primary target sites were predicted to include TNF, IL-6, IL-17, IL-1B, and VEGFA. Yiqing Fang may exert its effects through regulation of drug response, urate metabolism, purine compound absorption, inflammation response, lipopolysaccharide response, cytokine activity, and antioxidant activity. These effects may be mediated through signaling pathways such as IL-17, HIF-1, and AGE-RAGE. Yiqing Fang offers potential as a treatment for hyperuricemia due to its multiple active components, targeting of various sites, and engagement of multiple pathways.

Download full-text PDF

Source
http://dx.doi.org/10.14715/cmb/2024.70.4.34DOI Listing

Publication Analysis

Top Keywords

yiqing fang
32
network pharmacology
12
active components
12
yiqing
8
fang
8
pathways yiqing
8
fang allopurinol
8
complete blood
8
blood count
8
urinary nag
8

Similar Publications

Expression of a Sensory Neuron Membrane Protein SNMP2 in Olfactory Sensilla of Codling Moth Cydia pomonella (Lepidoptera: Tortricidae).

J Econ Entomol

August 2016

Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China

In insects, sensory neuron membrane proteins (SNMPs) are critical peripheral olfactory proteins and highly promote the sensitivity of pheromone detection. In this study, we cloned an SNMP transcript (CpomSNMP2, GenBank KU302714) from the antennae of the codling moth Cydia pomonella (L.) Its open reading frame is 1,575 bp and it encodes a protein with 524 amino acids.

View Article and Find Full Text PDF

Objective: To observe the clinical efficiency and safety of Benazepril and wind dispelling and dampness removing Chinese herbs were singly or combined used in patients with stage 3 chronic kidney disease (CKD 3), and to provide effective integrative medicine methods for treatment of CKD 3.

Methods: The CKD 3 was allocated to qi and yin deficiency syndrome, inner disturbance of wind and damp syndrome, stasis in Shen meridian syndrome, and inner accumulation of damp and heat syndrome. Recruited were patients of inner disturbance of wind and damp syndrome accompanied or unaccompanied with the other 3 syndrome types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!