Natural variation in SSW1 coordinates seed growth and nitrogen use efficiency in Arabidopsis.

Cell Rep

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China. Electronic address:

Published: May 2024

AI Article Synopsis

  • Seed size is influenced by both genetic factors and environmental signals, with a specific gene called SSW1 on chromosome 1 identified as a key regulator in Arabidopsis.
  • The SSW1 allele is linked to larger seeds that have higher amino acid and storage protein contents, and it shows better transport efficiency compared to its counterparts.
  • Under low nitrogen conditions, the SSW1 allele not only enhances seed yield but also improves nitrogen use efficiency, indicating a role in geographical adaptation and a potential avenue for agricultural improvements.

Article Abstract

Seed size is controlled not only by intrinsic genetic factors but also by external environmental signals. Here, we report a major quantitative trait locus (QTL) gene for seed size and weight on chromosome 1 (SSW1) in Arabidopsis, and we found SSW1 acts maternally to positively regulate seed size. Natural variation in SSW1 contains three types of alleles. The SSW1 allele produces larger seeds with more amino acid and storage protein contents than the SSW1 allele. SSW1 displays higher capacity for amino acid transport than SSW1 due to the differences in transport efficiency. Under low nitrogen supply, the SSW1 allele exhibits increased seed yield and nitrogen use efficiency (NUE). Locations of natural variation alleles of SSW1 are associated with local soil nitrogen contents, suggesting that SSW1 might contribute to geographical adaptation in Arabidopsis. Thus, our findings reveal a mechanism that coordinates seed growth and NUE, suggesting a potential target for improving seed yield and NUE in crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114150DOI Listing

Publication Analysis

Top Keywords

natural variation
12
seed size
12
ssw1 allele
12
ssw1
11
variation ssw1
8
coordinates seed
8
seed growth
8
nitrogen efficiency
8
alleles ssw1
8
amino acid
8

Similar Publications

Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.

View Article and Find Full Text PDF

The study involved a gross anatomical description of the parotid gland, mandibular gland, monostomatic sublingual gland, polystomatic sublingual gland, and zygomatic gland in 12 adult Eurasian wolves (Canis lupus lupus) (wild free-ranging individuals and their zoo counterparts), including their morphometry and microscopic evaluation using hematoxylin & eosin, mucicarmine, azan trichrome, PAS, AB pH 1.0, AB pH 2.5; AB pH 2.

View Article and Find Full Text PDF

Individual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks.

View Article and Find Full Text PDF

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) protein is located in the mitochondria and can regulate cell proliferation. Some studies have shown that the high NDUFA4L2 expression is linked with poor prognosis and cancer progression in various patients with cancers. However, the correlation between NDUFA4L2 and pan-cancer is unknown.

View Article and Find Full Text PDF

The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!