YjgM is a crotonyltransferase critical for polymyxin resistance of Escherichia coli.

Cell Rep

MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China. Electronic address:

Published: May 2024

Lysine crotonylation has attracted widespread attention in recent years. However, little is known about bacterial crotonylation, particularly crotonyltransferase and decrotonylase, and its effects on antibiotic resistance. Our study demonstrates the ubiquitous presence of crotonylation in E. coli, which promotes bacterial resistance to polymyxin. We identify the crotonyltransferase YjgM and its regulatory pathways in E. coli with a focus on crotonylation. Further studies show that YjgM upregulates the crotonylation of the substrate protein PmrA, thereby boosting PmrA's affinity for binding to the promoter of eptA, which, in turn, promotes EptA expression and confers polymyxin resistance in E. coli. Additionally, we discover that PmrA's crucial crotonylation site and functional site is Lys 164. These significant discoveries highlight the role of crotonylation in bacterial drug resistance and offer a fresh perspective on creating antibacterial compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114161DOI Listing

Publication Analysis

Top Keywords

polymyxin resistance
8
crotonylation
7
resistance
5
yjgm crotonyltransferase
4
crotonyltransferase critical
4
critical polymyxin
4
resistance escherichia
4
escherichia coli
4
coli lysine
4
lysine crotonylation
4

Similar Publications

Background: A liver abscess caused by hypervirulent can lead to multiple invasive extrahepatic infections, including lung abscesses, endophthalmitis, brain abscesses, and necrotizing fasciitis. This condition, known as liver abscess invasion syndrome, progresses rapidly and is associated with severe illness, high disability rates, and significant mortality. However, bloodstream infections with co-infection involving carbapenem-resistant are exceedingly rare.

View Article and Find Full Text PDF

CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.

View Article and Find Full Text PDF

Introduction: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses an increasing public health risk due to its high treatment difficulty and associated mortality, especially in bone marrow transplant (BMT) patients. The emergence of strains with multiple resistance mechanisms further complicates the management of these infections.

Methods: We isolated and characterized a novel ST11-KL64 hv-CRKP strain from a pediatric bone marrow transplantation patient.

View Article and Find Full Text PDF

De novo evolution of antibiotic resistance to Oct-TriA.

Microbiol Res

January 2025

Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada. Electronic address:

The rise of antimicrobial resistance as a global health concern has led to a strong interest in compounds able to inhibit the growth of bacteria without detectable levels of resistance evolution. A number of these compounds have been reported in recent years, including the tridecaptins, a small family of lipopeptides typified by the synthetic analogue octyl-tridecaptin A. Hypothesizing that prior reports of negligible resistance evolution have been due in part to limitations in the laboratory evolution systems used, we have attempted to select for resistant mutants using a soft agar gradient evolution (SAGE) system developed by our lab.

View Article and Find Full Text PDF

Background: Polymyxin B sulfate (PBS) and colistin sulfate (CS) are the last-line treatments for infections caused by multidrug-resistant Gram-negative bacteria, but their efficacy and safety have not been validated. The aims of the current study were to (1) determine their efficacy and safety among critically ill patients and the influencing factors, and (2) determine the relationships of drug exposure with efficacy and safety, to provide evidence for the precision dosing.

Method: This retrospective study included 100 critically ill patients treated with PBS and 80 treated with CS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!