Sjogren's syndrome (SS) is an autoimmune disorder characterized by dry mouth and dry eyes. Its pathogenic mechanism is currently unclear. This study aims to integrate weighted gene co-expression network analysis (WGCNA) and machine learning to identify key genes associated with SS. We downloaded 3 publicly available datasets from the GEO database comprising the gene expression data of 231 SS and 78 control cases, including GSE84844, GSE48378 and GSE51092, and carried out WGCNA to elucidate differences in the abundant genes. Candidate biomarkers for SS were then identified using a LASSO regression model. Totally 6 machine-learning models were subsequently utilized for validating the biological significance of major genes according to their expression. Finally, immune cell infiltration of the SS tissue was assessed using the CIBERSORT algorithm. A weighted gene co-expression network was built to divide genes into 10 modules. Among them, blue and red modules were most closely associated with SS, and showed significant enrichment in type I interferon signaling, cellular response to type I interferon and response to virus, etc. Combined machine learning identified 5 hub genes, including OAS1, EIF2AK2, IFITM3, TOP2A and STAT1. Immune cell infiltration analysis showed that SS was associated with CD8 T cell, CD4 T cell, gamma delta T cell, NK cell and dendritic cell activation. WGCNA was combined with machine learning to uncover genes that may be involved in SS pathogenesis, which can be utilized for developing SS biomarkers and appropriate therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-024-10750-4DOI Listing

Publication Analysis

Top Keywords

machine learning
16
weighted gene
12
gene co-expression
12
co-expression network
12
network analysis
8
major genes
8
sjogren's syndrome
8
immune cell
8
cell infiltration
8
type interferon
8

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.

View Article and Find Full Text PDF

Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.

Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!