Image-guided tumor ablative therapies are mainstay cancer treatment options but often require intra-procedural protective tissue displacement to reduce the risk of collateral damage to neighboring organs. Standard of care strategies, such as hydrodissection (fluidic injection), are limited by rapid diffusion of fluid and poor retention time, risking injury to adjacent organs, increasing cancer recurrence rates from incomplete tumor ablations, and limiting patient qualification. Herein, a "gel-dissection" technique is developed, leveraging injectable hydrogels for longer-lasting, shapeable, and transient tissue separation to empower clinicans with improved ablation operation windows and greater control. A rheological model is designed to understand and tune gel-dissection parameters. In swine models, gel-dissection achieves 24 times longer-lasting tissue separation dynamics compared to saline, with 40% less injected volume. Gel-dissection achieves anti-dependent dissection between free-floating organs in the peritoneal cavity and clinically significant thermal protection, with the potential to expand minimally invasive therapeutic techniques, especially across locoregional therapies including radiation, cryoablation, endoscopy, and surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202400272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!