Pre-inoculation water deficit effects on grapevine physiology, Xylella fastidiosa titers, and Pierce's disease progression.

BMC Res Notes

Crop Diseases, Pests and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA.

Published: April 2024

Drought and Pierce's disease are common throughout many grapevine-growing regions such as Mexico and the United States. Yet, how ongoing water deficits affect infections of Xylella fastidiosa, the causal agent of Pierce's disease, is poorly understood. Symptoms were observed to be significantly more severe in water-stressed plants one month after X. fastidiosa inoculation, and, in one experiment, titers were significantly lower in water-stressed than well-watered grapevines. Host chemistry examinations revealed overall amino acid and phenolic levels did not statistically differ due to water deficits, but sugar levels were significantly greater in water stressed than well-watered plants. Results highlight the need to especially manage Pierce's disease spread in grapevines experiencing drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055374PMC
http://dx.doi.org/10.1186/s13104-024-06780-1DOI Listing

Publication Analysis

Top Keywords

pierce's disease
16
xylella fastidiosa
8
water deficits
8
pre-inoculation water
4
water deficit
4
deficit effects
4
effects grapevine
4
grapevine physiology
4
physiology xylella
4
fastidiosa titers
4

Similar Publications

Prion disease is a fatal neurodegenerative disease caused by the misfolding of prion protein (PrP) encoded by the PRNP gene. While there is currently no cure for the disease, depleting PrP in the brain is an established strategy to prevent or stall templated misfolding of PrP. Here we developed in vivo cytosine and adenine base strategies delivered by adeno-associated viruses to permanently modify the PRNP locus to achieve PrP knockdown in the mouse brain.

View Article and Find Full Text PDF

is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in .

View Article and Find Full Text PDF

Fossils and other preserved specimens are integral for informing timing and evolutionary history in every biological system. By isolating a plant pathogen genome from herbarium-preserved diseased grapevine material from 1906 (Herb_1906), we were able to answer questions about an enigmatic system. The emergence of Pierce's disease (PD) of grapevine has shaped viticultural production in North America; yet, there are uncertainties about the geographic origin of the pathogen (Xylella fastidiosa subsp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!