One of the most common causes of death worldwide is heart disease, including arrhythmia. Today, sciences such as artificial intelligence and medical statistics are looking for methods and models for correct and automatic diagnosis of cardiac arrhythmia. In pursuit of increasing the accuracy of automated methods, many studies have been conducted. However, in none of the previous articles, the relationship and structure between the heart leads have not been included in the model. It seems that the structure of ECG data can help develop the accuracy of arrhythmia detection. Therefore, in this study, a new structure of Electrocardiogram (ECG) data was introduced, and the Graph Convolution Network (GCN), which has the possibility of learning the structure, was used to develop the accuracy of cardiac arrhythmia diagnosis. Considering the relationship between the heart leads and clusters based on different ECG poles, a new structure was introduced. In this structure, the Mutual Information(MI) index was used to evaluate the relationship between the leads, and weight was given based on the poles of the leads. Weighted Mutual Information (WMI) matrices (new structure) were formed by R software. Finally, the 15-layer GCN network was adjusted by this structure and the arrhythmia of people was detected and classified by it. To evaluate the performance of the proposed new network, sensitivity, precision, specificity, accuracy, and confusion matrix indices were used. Also, the accuracy of GCN networks was compared by three different structures, including WMI, MI, and Identity. Chapman's 12-lead ECG Dataset was used in this study. The results showed that the values of sensitivity, precision, specificity, and accuracy of the GCN-WMI network with 15 intermediate layers were equal to 98.74%, 99.08%, 99.97% & 99.82%, respectively. This new proposed network was more accurate than the Graph Convolution Network-Mutual Information (GCN-MI) with an accuracy equal to 99.71% and GCN-Id with an accuracy equal to 92.68%. Therefore, utilizing this network, the types of arrhythmia were recognized and classified. Also, the new network proposed by the Graph Convolution Network-Weighted Mutual Information (GCN-WMI) was more accurate than those conducted in other studies on the same data set (Chapman). Based on the obtained results, the structure proposed in this study increased the accuracy of cardiac arrhythmia diagnosis and classification on the Chapman data set. Achieving such accuracy for arrhythmia diagnosis is a great achievement in clinical sciences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055258 | PMC |
http://dx.doi.org/10.1186/s12874-024-02223-4 | DOI Listing |
Sci Rep
December 2024
Department of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Deep learning models are widely used for traffic forecasting on freeways due to their ability to learn complex temporal and spatial relationships. In particular, graph neural networks, which integrate graph theory into deep learning, have become popular for modeling traffic sensor networks. However, traditional graph convolutional networks (GCNs) face limitations in capturing long-range spatial correlations, which can hinder accurate long-term predictions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computing and Information Systems, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
Urban mobility prediction is crucial for optimizing resource allocation, managing transportation systems, and planning urban development. We propose a novel framework, GeoTemporal LSTM (GT-LSTM), designed to address the intricate spatiotemporal dynamics of urban environments. GT-LSTM integrates temporal dependencies with geographic information through a multi-modal approach that combines attention mechanisms and Recurrent Neural Networks (RNNs).
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task.
View Article and Find Full Text PDFSci Rep
December 2024
School of Marxism, China University of Political Science and Law (CUPL), Beijing, 100091, China.
To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students' long-term learning sequences and identify students' cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Science Department, Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt.
Enhanced technologies of the future are gradually improving the digital landscape. Internet of Things (IoT) technology is an advanced technique that is quickly increasing owing to the development of a network of organized online devices. In today's digital era, the IoT is considered one of the most robust technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!