Advanced humidity sensing properties of CuO ceramics.

Sci Rep

Giant Dielectric and Computational Design Research Group (GD-CDR), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.

Published: April 2024

This research explores the capacitive humidity sensing properties of CuO ceramic, selected for its simplicity as an oxide and ease of fabrication, in addition to its remarkable dielectric properties. The CuO sample was fabricated by sintering at 980 °C for 5 h. A microstructure with a relative density of 88.9% was obtained. X-ray diffraction confirmed the formation of a pure CuO phase. Broadband dielectric spectroscopy revealed that the observed giant dielectric properties at room temperature (RT) were attributed to extrinsic effects, including the internal barrier layer capacitor and sample-electrode contact effects. A key focus of this study was to examine the giant dielectric properties of CuO ceramic as a function of relative humidity (RH) at RT and frequencies of 10 and 10 Hz. It was observed that the capacitance of CuO continuously increased with rising RH levels, ranging from 30 to 95%. Notably, the maximum hysteresis errors were constrained to 2.3 and 3.3% at 10 and 10 Hz, respectively. Additionally, the CuO ceramic demonstrated very fast response and recovery times, approximately 2.8 and 0.95 min, respectively. The repeatability of the humidity response of the capacitance was also established. Overall, this research highlights the high potential of CuO as a giant dielectric material for application in humidity sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055922PMC
http://dx.doi.org/10.1038/s41598-024-60421-yDOI Listing

Publication Analysis

Top Keywords

properties cuo
16
cuo ceramic
12
dielectric properties
12
giant dielectric
12
humidity sensing
8
sensing properties
8
cuo
8
properties
5
dielectric
5
advanced humidity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!