Amides are important intermediates in organic chemistry and the pharmaceutical industry, but their low reactivity requires catalysts and/or severe reaction conditions for esterification. Here, a novel approach was devised to convert amides into esters without the use of transition metals. The method effectively overcomes the inherent low reactivity of amides by employing dimethylsulfate-mediated reaction to activate the C-N bonds. To confirm the proposed reaction mechanism, control experiments and density functional theory (DFT) calculations were conducted. The method demonstrates a wide array of substrates, including amides with typical H/alkyl/aryl substitutions, N,N-disubstituted amides, amides derived from alkyl, aryl, or vinyl carboxylic acids, and even amino acid substrates with stereocentres. Furthermore, we have shown the effectiveness of dimethylsulfate in removing acyl protective groups in amino derivatives. This study presents a method that offers efficiency and cost-effectiveness in broadening the esterification capabilities of amides, thereby facilitating their increased utilization as synthetic compounds in diverse transformations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055851PMC
http://dx.doi.org/10.1038/s42004-024-01180-9DOI Listing

Publication Analysis

Top Keywords

amides
8
c-n bonds
8
low reactivity
8
direct esterification
4
esterification amides
4
amides dimethylsulfate-mediated
4
dimethylsulfate-mediated activation
4
activation amide
4
amide c-n
4
bonds amides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!