Stimulus-responsive assembly of nonviral nucleocapsids.

Nat Commun

Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.

Published: April 2024

Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055949PMC
http://dx.doi.org/10.1038/s41467-024-47808-1DOI Listing

Publication Analysis

Top Keywords

stimulus-responsive assembly
4
assembly nonviral
4
nonviral nucleocapsids
4
nucleocapsids controlled
4
controlled assembly
4
assembly protein
4
protein shell
4
shell viral
4
viral genome
4
genome key
4

Similar Publications

Stimulus-Responsive Organometallic Assemblies Based on Azobenzene-Functionalized Poly-NHC Ligands.

Chem Asian J

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.

The reversible photoisomerization of azobenzene (AZB) and its derivatives has been applied across various fields. Developing discrete AZB-functionalized organometallic cages is essential for manufacturing functional materials. In this work, we designed and fabricated a series of three-dimensional, hexaazobenzene-terminated poly-NHC-based (NHC=N-heterocyclic carbene) complexes [M(A)](BF) and [M(B)](BF) (M = Ag, Au).

View Article and Find Full Text PDF

Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations.

View Article and Find Full Text PDF

Cyclodextrin supramolecular assembly confined luminescent materials.

Chem Sci

October 2024

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China

The macrocyclic supramolecular assembly confinement effect not only induces or extends the fluorescence/phosphorescence luminescence behavior of guest molecules but has also been widely applied in the research fields of chemistry, biology, and materials. This review primarily describes recent advances in cyclodextrin (CD) supramolecular assembly confined luminescent materials. Taking advantage of their hydrophobic cavity, CDs and their derivatives effectively encapsulate guest molecules and special functional groups or further assemble and polymerize to restrict the motion of guest chromophores, inducing and enhancing the luminescence behavior and realizing intelligent stimulus-responsive luminescence depending on changes in temperature, light, redox reactions and solvent polarity, which are successfully applied in targeted cell imaging, sensing, information encryption, anti-counterfeiting and flexible electronic light-emitting devices.

View Article and Find Full Text PDF

Stimulus-responsive systems allowing for the controlled release of drugs [...

View Article and Find Full Text PDF

Stimulus-responsive chromic materials exhibit color-switching properties under specific external stimuli and have been widely used in various fields. Transition-metal complexes show great potential applications as promising candidates for stimulus-responsive chromic materials, as their excited states not only depend on the chemical composition but are also affected by the intermolecular stacking modes. Owing to the intrinsic difficulty in the ordered stacking of the octahedral configuration, changing the stacking modes of iridium(III) complexes for multiple-stimulus responsiveness remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!