Graphene oxide (GO) is the one of the most promising family of materials as atomically thin membranes for water-related molecular separation technologies due to its amphipathic nature and layered structure. Here, we show important aspects of GO on water adsorption from molecular dynamics (MD) simulations, in-situ X-ray diffraction (XRD) measurements, and ex-situ nuclear magnetic resonance (NMR) measurements. Although the MD simulations for GO and the reduced GO models revealed that the flexibility of the interlayer spacing could be attributed to the oxygen-functional groups of GO, the ultra-large GO model cannot well explain the observed swelling of GO from XRD experiments. Our MD simulations propose a realistic GO interlayer structure constructed by staggered stacking of flexible GO sheets, which can explain very well the swelling nature upon water adsorption. The transmission electron microscopic (TEM) observation also supports the non-regular staggered stacking structure of GO. Furthermore, we demonstrate the existence of the two distinct types of adsorbed water molecules in the staggered stacking: water bonded with hydrophilic functional groups and "free" mobile water. Finally, we show that the staggered stacking of GO plays a crucial role in H/D isotopic recognition in water adsorption, as well as the high mobility of water molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055881 | PMC |
http://dx.doi.org/10.1038/s41467-024-47838-9 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.
View Article and Find Full Text PDFChem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Photodynamic therapy (PDT) using oxygen-dependent type II photosensitizers is frequently limited by the hypoxic microenvironment of solid tumors. Type I photosensitizers show oxygen-independent reactive oxygen species (ROS) generation upon light irradiation but still face the challenges of aggregation-caused quenching (ACQ) and low efficiency to produce ROS. Herein, we first prepare an efficient type I photosensitizer from a perylene derivative via intramolecular donor-acceptor binding and sulfur substitution, which significantly enhance intersystem crossing between singlet and triplet states and electron transfer capability.
View Article and Find Full Text PDFACS Nano
December 2024
College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China.
Two-dimensional covalent organic frameworks (2D COFs), a family of crystalline materials with abundant porous structures offering nanochannels for molecular transport, have enormous potential in the applications of separation, energy storage, and catalysis. However, 2D COFs remain limited by relatively large pore sizes (>1 nm) and weak interlayer interactions between 2D nanosheets, making it difficult to achieve efficient membranes to meet the selective sieving requirements for water molecules (0.3 nm) and hydrated salt ions (>0.
View Article and Find Full Text PDFNat Commun
November 2024
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Film-thermoelectric cooling devices are expected to provide a promising active thermal management solution with the continues increase of the power density of integrated circuit chips and other electronic devices. However, because the microstructure-related performance of thermoelectric films has not been perfectly matched with the device configuration, the potential of planar devices on chip heat dissipation has still not been fully exploited. Here, by liquid Te assistant growth method, highly (00 l) orientated BiTe-based films which is comparable to single crystals are obtained in polycrystal films in this work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!