Wearable sensors have recently been extensively used in sports science, physical rehabilitation, and industry providing feedback on physical fatigue. Information obtained from wearable sensors can be analyzed by predictive analytics methods, such as machine learning algorithms, to determine fatigue during shoulder joint movements, which have complex biomechanics. The presented dataset aims to provide data collected via wearable sensors during a fatigue protocol involving dynamic shoulder internal rotation (IR) and external rotation (ER) movements. Thirty-four healthy subjects performed shoulder IR and ER movements with different percentages of maximal voluntary isometric contraction (MVIC) force until they reached the maximal exertion. The dataset includes demographic information, anthropometric measurements, MVIC force measurements, and digital data captured via surface electromyography, inertial measurement unit, and photoplethysmography, as well as self-reported assessments using the Borg rating scale of perceived exertion and the Karolinska sleepiness scale. This comprehensive dataset provides valuable insights into physical fatigue assessment, allowing the development of fatigue detection/prediction algorithms and the study of human biomechanical characteristics during shoulder movements within a fatigue protocol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055894PMC
http://dx.doi.org/10.1038/s41597-024-03254-8DOI Listing

Publication Analysis

Top Keywords

wearable sensors
12
shoulder internal
8
external rotation
8
rotation movements
8
physical fatigue
8
fatigue protocol
8
shoulder movements
8
mvic force
8
fatigue
6
shoulder
5

Similar Publications

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array.

ACS Sens

January 2025

CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.

View Article and Find Full Text PDF

The mobility of people with severe visual impairment is limited affecting their comfort and productivity. There are about 45 million people who are blind with global financial burden and annual global cost of productivity estimated to be USD411 billion according to World Health Organization report of 2024. The contributions of the people who are visually impaired to the gross domestic product (GDP) can be enhanced deploying technology.

View Article and Find Full Text PDF

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Anaemia is a prevalent complication in patients with end-stage kidney disease (ESKD) undergoing haemodialysis. This study evaluates the accuracy of the Alio SmartPatchâ„¢, a non-invasive remote monitoring device, in measuring haemoglobin (Hb) and haematocrit (Hct) levels in haemodialysis patients by comparing its results with standard blood-based laboratory methods. The results from 116 patients across multiple sites in the USA and the Kingdom of Jordan show that SmartPatch measurements align closely with standard blood-based laboratory methods, meeting clinically acceptable limits of agreement.

View Article and Find Full Text PDF

Developing hydrogels with high conductivity and toughness a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn ions were soaked into the gel and then converted to Sn dendrites an electrochemical reaction; the excessive Sn ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!