Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055956PMC
http://dx.doi.org/10.1038/s41467-024-48010-zDOI Listing

Publication Analysis

Top Keywords

light sheet
8
sheet fluorescence
8
fluorescence microscopy
8
drug candidates
8
vascularized breast
4
breast cancer
4
cancer spheroid
4
spheroid platform
4
platform ranked
4
ranked evaluation
4

Similar Publications

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Global mean sea-level (GMSL) change can shed light on how the Earth system responds to warming. Glaciological evidence indicates that Earth's ice sheets retreated inland of early industrial (1850 CE) extents during the Holocene (11.7-0 ka), yet previous work suggests that Holocene GMSL never surpassed early industrial levels.

View Article and Find Full Text PDF

Background: Despite South Africa's well-established Civil Registration and Vital Statistics system (CRVS) and good completeness of death registration, challenges persist in terms of the quality of cause of death information and the delayed availability of mortality statistics. The introduction of an electronic medical certification of cause of death (eMCCD) system may offer opportunities to improve both the quality and timeliness of this information.

Methods: This study used an exploratory mixed methods design to investigate perceptions surrounding an electronic solution for registering deaths in South Africa.

View Article and Find Full Text PDF

Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!