CGK733 was reported as a compound that inhibited ATM/ATR kinase activities and blocked their checkpoint signaling pathways with great selectivity. However, this paper was subsequently retracted, and the truth about the activity of CGK733 remains unclear. We synthesized various analogs of CGK733 with a modification of the carboxylic acid moiety and/or the aniline derivative moiety to accumulate knowledge of the structure-activity relationship of this compound. Growth inhibitory activity of CGK733 and novel 35 analogs against HeLa S3 cells was evaluated, and the structure-activity relationship revealed that analogs with the 2-naphthyl or 4-fluorophenyl group instead of the benzhydryl group have activity comparable to CGK733 and that the 3-nitro group on the aniline moiety significantly affects the activity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbae047DOI Listing

Publication Analysis

Top Keywords

structure-activity relationship
12
growth inhibitory
8
inhibitory activity
8
analogs cgk733
8
activity cgk733
8
cgk733
6
activity
5
synthesis growth
4
activity tumor
4
tumor cells
4

Similar Publications

Doping with non-metallic heteroatom is an effective approach to tailor the electronic structure of Ni for enhancing its alkaline hydrogen oxidation reaction (HOR) catalytic performance. However, the modulation of HOR activity of Ni by lattice carbon (LC) atoms has rarely been reported, especially to reveal the rule between the doping effect and activity caused by the content of LC atoms. Here, hydrogen is proposed as a scavenger for LC atoms in the pyrolytic reduction process to finely control the content of LC atoms in Ni.

View Article and Find Full Text PDF

Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.

View Article and Find Full Text PDF

Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.

View Article and Find Full Text PDF

The P2X4 receptor is implicated in various pathological conditions, including neuropathic pain and cancer. This study reports the development of 1,4-naphthodiazepinedione-based P2X4 receptor antagonists aimed at both therapeutic applications and potential use as PET tracers for imaging P2X4 receptor expression in cancer. Structure-activity relationship studies aided by docking studies and molecular dynamics simulations led to a series of compounds with potent P2X4 receptor antagonism, promising inhibition of interleukin-1β release in THP-1 cells and suitability for radiolabeling with fluorine-18.

View Article and Find Full Text PDF

Due to its global burden, Targeting Hepatitis B virus (HBV) infection in humans is crucial. Herbal medicine has long been significant, with flavonoids demonstrating promising results. Hence, the present study aimed to establish a way of identifying flavonoids with anti-HBV activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!