The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibs.2024.03.015 | DOI Listing |
EMBO J
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.
View Article and Find Full Text PDFToxicology
December 2024
Université Paris Cité, Inserm, HERA Team, CRESS UMR 1153, F-75006 Paris, France. Electronic address:
Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, is suspected of disturbing brain development through largely unknown cellular and molecular mechanisms. In the central nervous system, oligodendrocytes are responsible for forming myelin sheaths, which enhance the propagation of action potentials along axons. Disruption of axon myelination can have lifelong consequences, making oligodendrocyte differentiation and myelination critical stages of brain development.
View Article and Find Full Text PDFMicrob Pathog
February 2025
Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China. Electronic address:
Nat Commun
December 2024
Department of Biochemistry, McGill University, Montreal, QC, Canada.
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
The dynamic balance between formation and disaggregation of amyloid fibrils is associated with many neurodegenerative diseases. Multiple chaperones interact with and disaggregate amyloid fibrils, which impacts amyloid propagation and cellular phenotypes. However, it remains poorly understood whether and how site-specific binding of chaperones to amyloids facilitates the concerted disaggregation process and modulates physiological consequences in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!