Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review.

Anal Chim Acta

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States. Electronic address:

Published: May 2024

Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342507DOI Listing

Publication Analysis

Top Keywords

detection methods
12
detection
10
scale microfluidic
8
microfluidic capillary
8
capillary scale
8
microfluidic devices
8
detection method
8
liquid phase
4
phase detection
4
detection miniature
4

Similar Publications

Background: Type 1 diabetes is the most common endocrine health condition among youth. Healthcare professionals must consider evidence-based guidelines in managing children and adolescents with diabetic ketoacidosis (DKA). The current study aims to assess the outcomes of implementing clinical guidelines by the American Diabetes Association to manage DKA among pediatrics in an emergency department in Palestine.

View Article and Find Full Text PDF

Lophine incorporated azo dye as a novel colorimetric sensor for multiple metal ions.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi 394650 Surat Gujarat India. Electronic address:

A single molecule sensor for several analytes is indeed desired by the scientists around the world due to obvious advantages. In this report we present a new class of Lophine incorporated azo dyes that has capacity of differential colorimetric detection of several metal ions. Interestingly the sensor was found to have pH dependent selective response towards several metals.

View Article and Find Full Text PDF

Predictive model of intrahepatic collateral vessels among hepatic veins in patients with liver tumors involving the caval confluence.

Surgery

January 2025

Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Hepatobiliary & General Surgery, IRCCS Humanitas Research Hospital, Milan, Italy. Electronic address:

Background: Communicating vessels among hepatic veins in patients with tumors invading/compressing hepatic veins at their caval confluence facilitate new surgical solutions. Although their recognition by intraoperative ultrasound has been described, the possibility of preoperative detection still remains uncertain. We aimed to develop a model to predict their presence before surgery.

View Article and Find Full Text PDF

The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.

View Article and Find Full Text PDF

Solvent-modulated preparation of lead-free CsBiIpolycrystalline film for high-performance photodetectors.

Nanotechnology

January 2025

School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 12 Qinghe Xiaoying East Road, Xisanqi Street, Haidian District, Beijing, Beijing, 100192, CHINA.

Lead-free cesium bismuth iodide (CsBiI) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors. However, most CsBiIphotodetectors demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality CsBiIpolycrystalline films and expand its applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!