Dual-functioning probes capable of detecting and removing hazardous substances have recently received increased attention compared to exclusive sensory probes. Herein, a new composite is synthesized by blending polydopamine imprinted polymers with fluorescent carbon dots (PIP-FCDs) for the selective recognition and adsorption of Ibuprofen (IBF). IBF is a nonsteroidal anti-inflammatory drug and is excessively released in the pharmaceutical wastes. The PIP-FCDs consist of confined pockets for encasing IBF and quenches fluorescence signal when contact with the molecule. PIP-FCDs show high sensitivity (limit of detection = 1.58 × 10 μM) and selectivity towards IBF in the presence of other pharmaceutical drugs i.e., aspirin, ketoprofen, norfloxacin, and levofloxacin. The adsorption studies show an adsorption capacity of 209.8 mg g with an extraction efficiency of around 99.9 %. Furthermore, PIP-FCDs are utilized to determine IBF levels in various aqueous pharmaceutical samples. This development provides a simple and dual-functioning probe for the detection and adsorption of IBF from various matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131765DOI Listing

Publication Analysis

Top Keywords

imprinted polymers
8
fluorescent carbon
8
carbon dots
8
ibf
6
blending polydopamine-derived
4
polydopamine-derived imprinted
4
polymers rice
4
rice straw-based
4
straw-based fluorescent
4
dots selective
4

Similar Publications

The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.

View Article and Find Full Text PDF

Mycotoxins are detectable in 60-80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput.

View Article and Find Full Text PDF

Zinc-imprinted polymer (ZnIP) and non-imprinted polymer (NIP) were synthesized by radical polymerization, and their properties were studied. The novelty of the work lies in the use of humic acids isolated from coals of the Shubarkol deposit (Karaganda, Kazakhstan) as a basis for the imprinted polymer matrix, with methacrylic acid and ethylene glycol dimethacrylate as a functional monomer and a cross-linking agent, respectively. The composition and structure of ZnIP and NIP were characterized using various physicochemical methods.

View Article and Find Full Text PDF

Precipitation Polymerization-Based Molecularly Imprinted Polymers: A Novel Approach for Transdermal Curcumin Delivery.

Polymers (Basel)

December 2024

Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia.

This research describes the synthesis and characterization of a molecularly imprinted polymer (MIP) as a candidate for the transdermal delivery of curcumin. The MIP was synthesized through precipitation polymerization using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking agent. MIP characterization studies were conducted using SEM-EDX and FTIR spectroscopy to determine the morphology and interaction between curcumin and polymers.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!