Chitosan (Ch) is a linear biodegradable natural carbohydrate polymer and the most appealing biopolymer, such as low-cost biodegradability, biocompatibility, hydrophilicity, and non-toxicity. In this case, Ch was utilized to synthesize AgCoFeO@Ch/Activated Carbon (AC) by the modified microwave-assisted co-precipitation method. The physical and chemical structure of magnetic nanocomposites was analyzed and characterized by Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Diffuse Reflection Spectroscopy (DRS), Value stream mapping (VSM), Fourier transform spectroscopy (FTIR) and BET. The effects of various parameters on the removal of dye (Acid Red18), including catalyst dose, dye concentration, pH, and time were studied. Results showed that the highest removal efficiencies were 96.68 % and 84 % for the synthetic sample and actual wastewater, respectively, in optimal conditions (pH: 3, the initial dye concentration: 10 mgL, the catalyst dose: 0.14 gL, time: 50 min). Mineralization, according to the COD analysis, was 89.56 %. Photocatalytic degradation kinetics of Acid Red 18 followed pseudo-first order and Langmuir-Hinshelwood with constants of k = 0.12 mg L min and K = 0.115 Lmg. Synthesized photocatalytic AgCoFeO@Ch/AC showed high stability and after five recycling cycles was able to remove the pollutant with an efficiency of 85.6 %. So, the synthesized heterogenous magnetic nanocatalyst AgCoFeO@Ch/AC was easily recycled from aqueous solutions and it can be used in the removal of dyes from industries with high efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.131897 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China. Electronic address:
Metal-organic frameworks (MOFs) have shown significant potential in the photocatalytic activation of peroxydisulfate (PDS). Although many MOFs have been investigated for their ability to activate PDS, the impact of structural interpenetration on this process remains underexplored. In this study, MIL-88D(FeNi) and MIL-126(FeNi) were selected to systematically study this effect.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFDoping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!