Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2024.114519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!