N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure. This practice extends the lifespan of rubber products, including tires, by preventing cracking, aging, and deterioration. However, the environmental consequences of waste generated during rubber product use, particularly the formation of 6PPD-quinone (6PPD-Q) through the reaction of 6PPD with ozone, have raised significant concerns due to their detrimental effects on ecosystems. Extensive research has revealed the widespread occurrence of 6PPD and its derivate 6PPD-Q in various environmental compartments, including air, water, and soil. The emerging substance of 6PPD-Q has been shown to pose acute mortality and long-term hazards to aquatic and terrestrial organisms at concentrations below environmentally relevant levels. Studies have demonstrated toxic effects of 6PPD-Q on a range of organisms, including zebrafish, nematodes, and mammals. These effects include neurobehavioral changes, reproductive dysfunction, and digestive damage through various exposure pathways. Mechanistic insights suggest that mitochondrial stress, DNA adduct formation, and disruption of lipid metabolism contribute to the toxicity induced by 6PPD-Q. Recent findings of 6PPD-Q in human samples, such as blood, urine, and cerebrospinal fluid, underscore the importance of further research on the public health and toxicological implications of these compounds. The distribution, fate, biological effects, and underlying mechanisms of 6PPD-Q in the environment highlight the urgent need for additional research to understand and address the environmental and health impacts of these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108677 | DOI Listing |
J Colloid Interface Sci
April 2025
College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China. Electronic address:
6PPD-quinone (6PPD-Q) as a derivative of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), is attracting intensive attention due to the significant hazard to ecosystems. However, the effective management of this type of contaminant has been scarcely reported. Hydrangea-like hollow O, Cl-codoped graphite-phase carbon nitride microspheres (HHCN), featuring open pores were readily prepared by molecular self-assembly and utilized to address 6PPD-Q in an aqueous system for the first time.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China. Electronic address:
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, Canada.
-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.
View Article and Find Full Text PDFEnviron Res
February 2025
School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is an antioxidant commonly used in tire manufacturing, and its release into the environment has significantly increased due to rapid urbanization. When subjected to ozonation, 6PPD converts into the harmful pollutant 6PPD quinone (6PPDQ). These substances enter wastewater treatment plants (WWTPs) via stormwater runoff and pipelines, posing significant risks to the functional microorganisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!