A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

POLAT: Protein function prediction based on soft mask graph network and residue-Label ATtention. | LitMetric

POLAT: Protein function prediction based on soft mask graph network and residue-Label ATtention.

Comput Biol Chem

Intelligent Bioinformatics Laboratory, School of Computer and Artificial Intelligence, Wuhan University of Technology, Wuhan, 430070, China. Electronic address:

Published: June 2024

Motivation: Elucidating protein function is a central problem in biochemistry, genetics, and molecular biology. Developing computational methods for protein function prediction is critical due to the significant gap between sequence and functional data. Recent advances in protein structure prediction, which strongly correlates with function, make it feasible to use structure to predict function. However, current structure-based methods overlook the fact that individual residues may contribute differently to the protein's function and do not take into account the correlation between protein residues and their functions. The challenge of effectively utilizing the relationship between protein residues and function-level information to predict protein function remains unsolved.

Result: We proposed a protein function prediction method based on Soft Mask Graph Networks and Residue-Label Attention (POLAT), which could combine sequence features, predicted structure features, and function-level information to get an accurate prediction. We use soft mask graph networks to adaptively extract the residues relevant to functions. A residue-label attention mechanism is adopted to obtain the protein-level encoded features of a protein, which are then concatenated with a protein-level embedding and fed into a dense classifier to determine the probabilities of each function. POLAT achieves 0.670, 0.515, 0.578 Fmax and 0.677, 0.409, 0.507 AUPR on the PDB cdhit test set for the MFO, BPO, and CCO domains, respectively, outperforming the existing structure-based SOTA method GAT-GO (Fmax 0.633, 0.492, 0.547; AUPR 0.660, 0.381, 0.479). POLAT is also competitive in extensive experiments among sequence-based and multimodal methods and achieves the SOTA performance in three out of six metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108064DOI Listing

Publication Analysis

Top Keywords

protein function
20
function prediction
12
soft mask
12
mask graph
12
residue-label attention
12
function
9
based soft
8
protein
8
protein residues
8
graph networks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!