Isoproterenol (ISO) administration produces significant biochemical and histological changes including oxidative stress, reactive oxygen species (ROS) overproduction, and inflammation that leads to aggravation of myocardial injury. Subcutaneous or intraperitoneal ISO injection into rats can replicate several features of human heart disease, making it a useful tool for comprehending the underlying mechanisms and evaluating potential therapeutic strategies. In the present chapter, we elaborate on how depending on the precise experimental goals and the intended level of severity, different dosages and regimens are employed to induce myocardial injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3846-0_9 | DOI Listing |
J Cardiothorac Surg
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Capital Medical University, Beijing, 100069, China.
Objective: miRNA, circRNA, and lncRNA play crucial roles in the pathogenesis and progression of myocardial ischemia-reperfusion injury (MI/RI). This study aims to provide valuable insights into miRNA, circRNA, lncRNA, and MI/RI from a bibliometric standpoint, with the goal of fostering further advancements in this area.
Methods: The relevant literature in the field of miRNA, circRNA, lncRNA, and MI/RI was retrieved from the Science Citation Index Expanded (SCI-E) database within Web of Science.
J Cardiothorac Surg
January 2025
The First Hospital of Lanzhou University, Lanzhou, China.
Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.
Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.
Nat Cardiovasc Res
January 2025
Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education; National Key Laboratory of Frigid Zone Cardiovascular Diseases), Harbin Medical University, Harbin, China.
Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.
Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment.
View Article and Find Full Text PDFJAMA Surg
January 2025
Population Health Research Institute, Hamilton, Ontario, Canada.
Importance: Perioperative bleeding is common in general surgery. The POISE-3 (Perioperative Ischemic Evaluation-3) trial demonstrated efficacy of prophylactic tranexamic acid (TXA) compared with placebo in preventing major bleeding without increasing vascular outcomes in noncardiac surgery.
Objective: To determine the safety and efficacy of prophylactic TXA, specifically in general surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!