Maternal embryonic leucine zipper kinase (MELK) is an oncogene in many tumors, although its contribution to lung adenocarcinoma (LUAD) is unclear. We examined MELK expression in patient LUAD tissue and matched healthy lung tissues. We investigated the connection between MELK expression and tumor differentiation, lymph node metastasis, and patient survival. We downregulated MELK expression using small-hairpin RNA to assess its impact on LUAD cell proliferation, clonogenicity, and invasion. We also investigated the molecular mechanism underlying these effects. MELK expression was significantly heightened in LUAD tissue as opposed to the matching healthy lung tissues. LUAD patients who had MELK overexpression had a worse prognosis. Suppression of MELK hinders proliferation, clonogenicity, and invasion of LUAD cells. The MELK suppression led to the arrest of the cell cycle's G1/S phase by reducing the cyclin E1 and cyclin D expression. Our outcomes manifest that MELK can function as a beneficial prognostic indication and a new therapy target for LUAD. MELK has an essential function in progressing LUAD, manifesting potential as a viable target for therapeutic intervention in this disease management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-024-01143-4 | DOI Listing |
Cancer Rep (Hoboken)
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.
Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).
Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.
Front Cell Dev Biol
December 2024
Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China.
PCAT19, a long non-coding RNA, has attracted considerable attention due to its diverse roles in various malignancies. This work compiles current research on PCAT19's involvement in cancer pathogenesis and progression. Abnormal expression of PCAT19 has been observed in various cancers, and its correlation with clinical features and prognosis positions it as a promising prognostic biomarker.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Background: Cancer stem cells are characterized by self-renewal, clonal tumor initiation capacity, and treatment resistance, which play essential roles in the tumor progression of prostate cancer (PCa). In this study, we aim to explore the features of cancer stemness and characterize the expression of stem cell-related genes for PCa.
Methods: We downloaded RNA-seq data and related clinical information from The Cancer Genome Atlas (TCGA) database.
Mol Cancer Res
December 2024
Shenzhen University, shenzhen, China.
J Stomatol Oral Maxillofac Surg
December 2024
Department of Stomatology, The Fourth Hospital of Hebei Medical University, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!