The emotion paradox in the aging body and brain.

Ann N Y Acad Sci

Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.

Published: June 2024

With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.15138DOI Listing

Publication Analysis

Top Keywords

autonomic compensation
12
parasympathetic activity
8
sympathetic activity
8
emotional well-being
8
compensation model
8
pregenual pfc
8
stimuli tend
8
tend increase
8
activity
6
increase
5

Similar Publications

Background: Data regarding long-term recovery from autoimmune encephalitis (AE) remain limited.

Methods: This retrospective observational study investigated outcomes in 182 patients who met the 2016 criteria for definite AE. Recovery data were available in 172 patients.

View Article and Find Full Text PDF

Syncopal reactions in blood donors: Pathophysiology, clinical course, and features.

Asian J Transfus Sci

September 2022

Department of Physiology, Mahatma Gandhi Medical College, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India.

Vasovagal syncope (VVS) in donors is a transient loss of consciousness due to short-term global cerebral hypoperfusion, which has a rapid onset and has complete spontaneous recovery. VVS may be triggered by pain, fear, anxiety, or emotional upset and loss of blood perse. It is an exaggeration of an adaptive response meant to assist in reducing the amount of bleeding/loss of blood.

View Article and Find Full Text PDF

Background And Objectives: The Chordate System administers kinetic oscillation stimulation (K.O.S) into the nasal cavity thereby potentially modulating the activity of trigemino-autonomic reflex.

View Article and Find Full Text PDF

Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading.

Cardiovasc Res

December 2024

Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.

Aims: Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients.

View Article and Find Full Text PDF

Patients With .

J Neurotrauma

December 2024

Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.

This study compared the roles of extraparenchymal autonomic nervous system (ANS) control of cerebral blood flow (CBF) versus intraparenchymal cerebrovascular autoregulation in 487 patients with aneurysmal subarachnoid hemorrhage (SAH) and 413 patients with traumatic brain injury (TBI). Vasomotion intensity of extraparenchymal and intraparenchymal vessels were quantified as the amplitude of oscillations of arterial blood pressure (ABP) and intracranial pressure (ICP) in the very low frequency range of 0.02-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!