A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Cooperative Fault-Tolerant Control for Uncertain Multi-Agent Systems Subject to Actuator Faults. | LitMetric

Robust Cooperative Fault-Tolerant Control for Uncertain Multi-Agent Systems Subject to Actuator Faults.

Sensors (Basel)

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Published: April 2024

This article investigates the robust cooperative fault-tolerant control problem of multi-agent systems subject to mismatched uncertainties and actuator faults. During the design process of the intermediate variable estimator, there is no need to satisfy fault estimation matching conditions, and this overcomes a crucial constraint of traditional observers and estimators. The feedback term of the designed estimator contains the centralized estimation errors and the distributed estimation errors of the agent, and this further improves the design freedom of the proposed estimator. A novel fault-tolerant control protocol is designed based on the fault estimation information. In this work, the bounds of the fault and its derivatives are unknown, and the considered method is applicable to both directed and undirected multi-agent systems. Furthermore, the parameters of the estimator are determined through the resolution of a linear matrix inequality (LMI), which is decoupled by employing coordinate transformation and Schur decomposition. Lastly, a numerical simulation result is used to demonstrate the effectiveness of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054036PMC
http://dx.doi.org/10.3390/s24082651DOI Listing

Publication Analysis

Top Keywords

fault-tolerant control
12
multi-agent systems
12
robust cooperative
8
cooperative fault-tolerant
8
systems subject
8
actuator faults
8
fault estimation
8
estimation errors
8
control uncertain
4
uncertain multi-agent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!