In tunnel boring projects, wear and tear in the tooling system can have significant consequences, such as decreased boring efficiency, heightened maintenance costs, and potential safety hazards. In this paper, a fault diagnosis method for TBM tooling systems based on SAV-SVDD failure location (SSFL) is proposed. The aim of this method is to detect faults caused by disk cutter wear during the boring process, which diminishes the boring efficiency and is challenging to detect during construction. This paper uses SolidWorks to create a complete three-dimensional model of the TBM hydraulic thrust system and tool system. Then, dynamic simulations are performed with Adams. This helps us understand how the load on the propulsion hydraulic cylinder changes as the TBM tunneling tool wears to different degrees during construction. The hydraulic propulsion system was modeled and simulated using AMESIM software. Utilizing the load on the hydraulic propulsion cylinder as an input signal, pressure signals from the two chambers of the hydraulic cylinder and the system's flow signal were acquired. This enabled an in-depth exploration of the correlation between these acquired signals and the extent of the tooling system failure. Following this analysis, a collection of normal sample data and sample data representing different degrees of disk cutter abrasions was amassed for further study. Next, an SSFL network model for locating the failure area of the cutter was established. Fault sample data were used as the input, and the accuracy of the fault diagnosis model was tested. The test results show that the performance of the SSFL network model is better than that of the SAE-SVM and SVDD network models. The SSFL model achieves 90% accuracy in determining the failure area of the cutter head. The model effectively identifies the failure regions, enabling timely tool replacement to avoid decreased boring efficiency under wear conditions. The experimental findings validate the feasibility of this approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053918 | PMC |
http://dx.doi.org/10.3390/s24082631 | DOI Listing |
Talanta
January 2025
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China. Electronic address:
Dissolved gas analysis (DGA) is an effective method for diagnosing potential faults in oil-immersed power transformers. Metal oxide semiconductor (MOS) gas sensors exhibit excellent performance. However, high operating temperatures can accelerate device aging, thereby reducing the reliability of online monitoring.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Industrial Engineering, Inha University, Incheon, South Korea.
In the contemporary manufacturing landscape, the advent of artificial intelligence and big data analytics has been a game-changer in enhancing product quality. Despite these advancements, their application in diagnosing failure probability and risk remains underexplored. The current practice of failure risk diagnosis is impeded by the manual intervention of managers, leading to varying evaluations for identical products or similar facilities.
View Article and Find Full Text PDFPLoS One
January 2025
Xi'an Special Equipment Inspection Institute, Xi'an, Shaanxi, China.
A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11673, Saudi Arabia.
Industry 4.0 represents the fourth industrial revolution, which is characterized by the incorporation of digital technologies, the Internet of Things (IoT), artificial intelligence, big data, and other advanced technologies into industrial processes. Industrial Machinery Health Management (IMHM) is a crucial element, based on the Industrial Internet of Things (IIoT), which focuses on monitoring the health and condition of industrial machinery.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CARISSMA Institute of Electric, Connected, and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!