This paper presents a suitably general model for resistive displacement sensors where the model parameters depend on the current sensor conditions, thereby capturing wearout and failure, and proposes a novel fault detection method that can be seamlessly applied during sensor operation, providing self-diagnostic capabilities. On the basis of the estimation of model parameters, an innovative self-compensation method is derived to increase the accuracy of sensors subject to progressive wearout. The proposed model and methods have been validated by both numerical simulations and experimental tests on two real resistive displacement sensors, placed in undamaged and faulty conditions, respectively. The fault detection method has shown an accuracy of 97.2%. The position estimation error is < ±0.2% of the full-scale span for the undamaged sensor, while the self-compensation method successfully reduces the position estimation error from ±15% to approximately ±2% of the full-scale span for the faulty sensor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055168 | PMC |
http://dx.doi.org/10.3390/s24082594 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.
Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
Department of orthopedics, the Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, 310000, China.
This study aims to compare the sinking and shifting of an enhanced escape-proof intervertebral fusion device with a traditional TLIF intervertebral fusion device.Five specimens each of the improved escape-resistant intervertebral cage and the traditional TLIF cage were selected. Four types of mechanical tests were conducted on each cage, Furthermore, a blade-cutting torque test was performed on the escape-resistant cage, with the recording of load-displacement curves and mechanical values.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Using cryogenic electron microscopy (cryo-EM), we determine the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. In the autoinhibited state, the cytosolic regulatory (R) domain plugs into the transmembrane substrate-binding site and extends into the cytosol to form a composite ATP-binding site at the surface of nucleotide-binding domain 2.
View Article and Find Full Text PDFJ Vet Res
December 2024
Department of Life Science and Engineering, Foshan University, 52800 Foshan, China.
Introduction: (MG) infection is a primary cause of chronic respiratory disease in poultry, threatening the economic viability of China's goose-farming industry. This study investigated the pathogenicity and drug resistance of an MG strain isolated from geese and whole-genome sequenced the strain.
Material And Methods: A strain designated MG-GD01/22 was isolated from the air-sac tissues of five geese with chronic respiratory disease on a Guangdong goose farm.
Med Teach
January 2025
Peninsula School of Medicine, Faculty of Health, University of Plymouth, Penzance, Cornwall, United Kingdom.
In adopting reductive instrumentalism as a dominant discourse medical education can be seen to have cultivated a values monoculture resistant to innovation. This culture characteristically retreats to the safety of conservatism rather than diversifying and innovating to embrace values beyond the functional - such as the ethical, aesthetic, and political. Here - where teaching displaces facilitation of learning - training is privileged over education, competence over capability, linearity over complexity, and information over knowledge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!