Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the context of Industry 4.0, industrial production equipment needs to communicate through the industrial internet to improve the intelligence of industrial production. This requires the current communication network to have the ability of large-scale equipment access, multiple communication protocols/heterogeneous systems interoperability, and end-to-end deterministic low-latency transmission. Time-sensitive network (TSN), as a new generation of deterministic Ethernet communication technology, is the main development direction of time-critical communication technology applied in industrial environments, and Wi-Fi technology has become the main way of wireless access for users due to its advantages of high portability and mobility. Therefore, accessing WiFi in the TSN is a major development direction of the current industrial internet. In this paper, we model the scheduling problem of TSN and WiFi converged networks and propose a scheme based on a greedy strategy distributed estimation algorithm (GE) to solve the scheduling problem. Compared with the integer linear programming (ILP) algorithm and the Tabu algorithm, the algorithm implemented in this paper outperforms the other algorithms in being able to adapt to a variety of different scenarios and in scheduling optimization efficiency, especially when the amount of traffic to be deployed is large.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053665 | PMC |
http://dx.doi.org/10.3390/s24082554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!