This paper proposes a learning-based control approach for autonomous vehicles. An explicit Takagi-Sugeno (TS) controller is learned using input and output data from a preexisting controller, employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. At the same time, the vehicle model is identified in the TS model form for closed-loop stability assessment using Lyapunov theory and LMIs. The proposed approach is applied to learn the control law from an MPC controller, thus avoiding the use of online optimization. This reduces the computational burden of the control loop and facilitates real-time implementation. Finally, the proposed approach is assessed through simulation using a small-scale autonomous racing car.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054552PMC
http://dx.doi.org/10.3390/s24082551DOI Listing

Publication Analysis

Top Keywords

learning-based control
8
autonomous vehicles
8
adaptive neuro-fuzzy
8
neuro-fuzzy inference
8
inference system
8
proposed approach
8
control autonomous
4
vehicles adaptive
4
system linear
4
linear matrix
4

Similar Publications

MAGPIE: A Machine Learning Approach to Decipher Protein-Protein Interactions in Human Plasma.

J Proteome Res

January 2025

Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.

Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS) methods is often used to identify protein-protein interactions (PPIs). While these approaches are prone to false positive identifications through contamination and antibody nonspecific binding, their results can be filtered using negative controls and computational modeling. However, such filtering does not effectively detect false-positive interactions when IP-MS/MS is performed on human plasma samples.

View Article and Find Full Text PDF

Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.

View Article and Find Full Text PDF

In recent years, the application of AI has expanded rapidly across various fields. However, it has faced challenges in establishing a foothold in medicine, particularly in invasive medical procedures. Medical algorithms and devices must meet strict regulatory standards before they can be approved for use on humans.

View Article and Find Full Text PDF

This paper proposes the fixed-time prescribed performance optimal consensus control method for stochastic nonlinear multi-agent systems with sensor faults. The consensus error converges to the prescribed performance bounds in fixed-time by an improved performance function and coordinate transformation. Due to the unknown faults in sensors, the system states cannot be gained correctly; therefore, an adaptive compensation strategy is constructed based on the approximation capabilities of neural networks to solve the negative impact of sensor failures.

View Article and Find Full Text PDF

We assessed the feasibility of using deep learning-based image harmonization to improve the reproducibility of radiomics features in abdominal CT scans. In CT imaging, harmonization adjusts images from different institutions to ensure consistency despite variations in scanners and acquisition protocols. This process is essential because such differences can lead to variability in radiomics features, affecting reproducibility and accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!