The accurate estimation of energy expenditure from simple objective accelerometry measurements provides a valuable method for investigating the effect of physical activity (PA) interventions or population surveillance. Methods have been evaluated previously, but none utilize the temporal aspects of the accelerometry data. In this study, we investigated the energy expenditure prediction from acceleration measured at the subjects' hip, wrist, thigh, and back using recurrent neural networks utilizing temporal elements of the data. The acceleration was measured in children (N = 33) performing a standardized activity protocol in their natural environment. The energy expenditure was modelled using Multiple Linear Regression (MLR), stacked long short-term memory (LSTM) networks, and combined convolutional neural networks (CNN) and LSTM. The correlation and mean absolute percentage error (MAPE) were 0.76 and 19.9% for the MLR, 0.882 and 0.879 and 14.22% for the LSTM, and, with the combined LSTM-CNN, the best performance of 0.883 and 13.9% was achieved. The prediction error for vigorous intensities was significantly different ( < 0.01) from those of the other intensity domains: sedentary, light, and moderate. Utilizing the temporal elements of movement significantly improves energy expenditure prediction accuracy compared to other conventional approaches, but the prediction error for vigorous intensities requires further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055080 | PMC |
http://dx.doi.org/10.3390/s24082520 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFSci Adv
January 2025
School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK.
Whether metazoan diversification during the Cambrian Radiation was driven by increased marine oxygenation remains highly debated. Repeated global oceanic oxygenation events have been inferred during this interval, but the degree of shallow marine oxygenation and its relationship to biodiversification and clade appearance remain uncertain. To resolve this, we interrogate an interval from ~527 to 519 Ma, encompassing multiple proposed global oceanic oxygenation events.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFPLoS One
January 2025
CFD Research Corporation, Huntsville, AL, United States of America.
Purpose: To assess physiological metrics during the use of a commercially available bilateral active ankle exoskeleton during a challenging military-relevant task and if use of the exoskeleton during this task influences: metabolic load, physiological measures or rate of perceived exertion.
Methods: Nine healthy volunteers (5M, 4F) completed this randomized cross-over design trial, with a baseline visit and two randomized test sessions (with/without the exoskeleton). Variables included impact on time to exhaustion during walking on a treadmill at varying speeds and gradients (0-15%) at 26.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!