Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concrete-filled steel tube (CFST) members have been widely used in civil engineering due to their advanced mechanical properties. However, internal defects such as the concrete core voids and interface debonding in CFST structures are likely to weaken their load-carrying capacity and stiffness, which affects the safety and serviceability. Visualizing the inner defects of the concrete cores in CFST members is a critical requirement and a challenging task due to the obvious difference in the material mechanical parameters of the concrete core and steel tube in CFST members. In this study, a curved ray theory-based travel time tomography (TTT) with a least square iterative linear inversion algorithm is first introduced to quantitatively identify and visualize the sizes and positions of the concrete core voids in CFST members. Secondly, a numerical investigation of the influence of different parameters on the inversion algorithm for the defect imaging of CFST members, including the effects of the model weighting matrix, weighting factor and grid size on the void's imaging quality and accuracy, is carried out. Finally, an experimental study on six CFST specimens with mimicked concrete core void defects is performed in a laboratory and the mimicked defects are visualized. The results demonstrate that TTT can identify the sizes and positions of the concrete core void defects in CFST members efficiently with the use of optimal parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054418 | PMC |
http://dx.doi.org/10.3390/s24082503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!