In traditional tunnel monitoring, the characteristic points of an object within a tunnel are measured to obtain information about the object. Considering the limitations of the traditional method in measuring the complex surface structure of tunnels, such as limited monitoring points, a long measurement period, and low precision, this study introduces an approach that uses three-dimensional (3D) laser scanning for monitoring tunnel cross-section deformation. Using this approach, the soft surrounding rock of a high-altitude ultralong tunnel was taken as the monitoring object. The test tunnel was first scanned using a 3D laser scanner, and the collected data were processed. The internal structural data of the tunnel were subsequently compared with its actual contour lines and the data of its primary branch and secondary lining on different dates. The results indicate that the arch roof of the tunnel tended to be stable within a certain time range when the positions of the primary branch and secondary lining were at different measuring points with different pile numbers. The deformation of the pile number on the left and right sides did not generally exceed 0.02 m, except at a few measuring points. A comparison between the actual cross section of the initial branch and that of the designed section showed that the actual elevation of the arch of the initial branch of the tunnel was greater than its designed elevation by no more than 0.3 m. Hence, through this study, a convenient and practical method is presented for monitoring deformation in complex curved tunnel structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054944 | PMC |
http://dx.doi.org/10.3390/s24082499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!