A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust Offloading for Edge Computing-Assisted Sensing and Communication Systems: A Deep Reinforcement Learning Approach. | LitMetric

In this paper, we consider an integrated sensing, communication, and computation (ISCC) system to alleviate the spectrum congestion and computation burden problem. Specifically, while serving communication users, a base station (BS) actively engages in sensing targets and collaborates seamlessly with the edge server to concurrently process the acquired sensing data for efficient target recognition. A significant challenge in edge computing systems arises from the inherent uncertainty in computations, mainly stemming from the unpredictable complexity of tasks. With this consideration, we address the computation uncertainty by formulating a robust communication and computing resource allocation problem in ISCC systems. The primary goal of the system is to minimize total energy consumption while adhering to perception and delay constraints. This is achieved through the optimization of transmit beamforming, offloading ratio, and computing resource allocation, effectively managing the trade-offs between local execution and edge computing. To overcome this challenge, we employ a Markov decision process (MDP) in conjunction with the proximal policy optimization (PPO) algorithm, establishing an adaptive learning strategy. The proposed algorithm stands out for its rapid training speed, ensuring compliance with latency requirements for perception and computation in applications. Simulation results highlight its robustness and effectiveness within ISCC systems compared to baseline approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054745PMC
http://dx.doi.org/10.3390/s24082489DOI Listing

Publication Analysis

Top Keywords

sensing communication
8
edge computing
8
computing resource
8
resource allocation
8
iscc systems
8
robust offloading
4
edge
4
offloading edge
4
edge computing-assisted
4
sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!