One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to satellite signals such as forests, tunnels or urban areas. The aim of the article is to carry out the testing and analysis of selected navigation parameters (3D position coordinates (Northing, Easting, and height) and Euler angles (pitch and roll)) of the GNSS/INS system for Unmanned Surface Vehicle (USV) path localization during inland hydrographic surveys. The research used the Ellipse-D GNSS/INS system working in the Real Time Kinematic (RTK) mode in order to determine the position of the "HydroDron" Autonomous Surface Vehicle (ASV). Measurements were conducted on four representative routes with a parallel and spiral arrangement of sounding profiles on Lake Kłodno (Poland). Based on the obtained research results, position accuracy measures of the "HydroDron" USV were determined using the Ellipse-D GNSS/INS system. Additionally, it was determined whether USV path localization using a GNSS/INS system working in the RTK mode meets the positioning requirements for inland hydrographic surveys. Research has shown that the Ellipse-D system operating in the RTK mode can be successfully used to position vessels when carrying out inland hydrographic surveys in all International Hydrographic Organization (IHO) Orders (Exclusive, Special, 1a/1b and 2) even when it does not work 100% correctly, e.g., loss of RTK corrections for an extended period of time. In an area with limited coverage of the mobile network operator (30-40% of the time the receiver operated in the differential mode), the positioning accuracy of the "HydroDron" USV using the Ellipse-D GNSS/INS system working in the RTK mode was from 0.877 m to 0.941 m for the R95(2D) measure, depending on the route travelled. Moreover, research has shown that if the Ellipse-D system performed GNSS/INS measurements using the RTK method, the pitch and roll error values amounted to approx. 0.06°, which is almost identical to that recommended by the device manufacturer. However, when working in the differential mode, the pitch and roll error values increased from 0.06° to just over 0.2°.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053715 | PMC |
http://dx.doi.org/10.3390/s24082418 | DOI Listing |
Sensors (Basel)
August 2024
School of Automation, Beijing Information Science & Technology University, Beijing 100192, China.
In urban road environments, global navigation satellite system (GNSS) signals may be interrupted due to occlusion by buildings and obstacles, resulting in reduced accuracy and discontinuity of combined GNSS/inertial navigation system (INS) positioning. Improving the accuracy and robustness of combined GNSS/INS positioning systems for land vehicles in the presence of GNSS interruptions is a challenging task. The main objective of this paper is to develop a method for predicting GNSS information during GNSS outages based on a long short-term memory (LSTM) neural network to assist in factor graph-based combined GNSS/INS localization, which can provide a reliable combined localization solution during GNSS signal outages.
View Article and Find Full Text PDFSensors (Basel)
April 2024
Department of Transport and Logistics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland.
One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to satellite signals such as forests, tunnels or urban areas. The aim of the article is to carry out the testing and analysis of selected navigation parameters (3D position coordinates (Northing, Easting, and height) and Euler angles (pitch and roll)) of the GNSS/INS system for Unmanned Surface Vehicle (USV) path localization during inland hydrographic surveys.
View Article and Find Full Text PDFSensors (Basel)
February 2024
Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, China.
High-accuracy heading angle is significant for estimating autonomous vehicle attitude. By integrating GNSS (Global Navigation Satellite System) dual antennas, INS (Inertial Navigation System), and a barometer, a GNSS/INS/Barometer fusion method is proposed to improve vehicle heading angle accuracy. An adaptive Kalman filter (AKF) is designed to fuse the INS error and the GNSS measurement.
View Article and Find Full Text PDFSensors (Basel)
January 2024
The Advanced Mobility Research Institute, Kanazawa University, Kanazawa 920-1192, Japan.
Lane graphs are very important for describing road semantics and enabling safe autonomous maneuvers using the localization and path-planning modules. These graphs are considered long-life details because of the rare changes occurring in road structures. On the other hand, the global position of the corresponding topological maps might be changed due to the necessity of updating or extending the maps using different positioning systems such as GNSS/INS-RTK (GIR), Dead-Reckoning (DR), or SLAM technologies.
View Article and Find Full Text PDFMath Biosci Eng
January 2024
School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China.
The Kalman filter based on singular value decomposition (SVD) can sufficiently reduce the accumulation of rounding errors and is widely used in various applications with numerical calculations. However, in order to improve the filtering performance and adaptability in a tightly GNSS/INS (Global Navigation Satellite System and Inertial Navigation System) integrated navigation system, we propose an improved robust method to satisfy the requirements. To solve the issue of large fluctuations in GNSS signals faced by the conventional method that uses a fixed noise covariance, the proposed method constructs a correction variable through the innovation and the new matrix which is obtained by performing SVD on the original matrix, dynamically correcting the noise covariance and has better robustness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!