In recent decades, technological advancements have transformed the industry, highlighting the efficiency of automation and safety. The integration of augmented reality (AR) and gesture recognition has emerged as an innovative approach to create interactive environments for industrial equipment. Gesture recognition enhances AR applications by allowing intuitive interactions. This study presents a web-based architecture for the integration of AR and gesture recognition, designed to interact with industrial equipment. Emphasizing hardware-agnostic compatibility, the proposed structure offers an intuitive interaction with equipment control systems through natural gestures. Experimental validation, conducted using Google Glass, demonstrated the practical viability and potential of this approach in industrial operations. The development focused on optimizing the system's software and implementing techniques such as normalization, clamping, conversion, and filtering to achieve accurate and reliable gesture recognition under different usage conditions. The proposed approach promotes safer and more efficient industrial operations, contributing to research in AR and gesture recognition. Future work will include improving the gesture recognition accuracy, exploring alternative gestures, and expanding the platform integration to improve the user experience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054752 | PMC |
http://dx.doi.org/10.3390/s24082407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!