The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054382PMC
http://dx.doi.org/10.3390/s24082403DOI Listing

Publication Analysis

Top Keywords

graphene-based materials
12
materials deep
12
deep eutectic
12
eutectic solvents
12
synergistic applications
4
applications graphene-based
4
solvents sustainable
4
sustainable sensing
4
sensing comprehensive
4
comprehensive review
4

Similar Publications

Graphene-Based Materials for Bone Regeneration in Dentistry: A Systematic Review of In Vitro Applications and Material Comparisons.

Nanomaterials (Basel)

January 2025

Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain.

Introduction: Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes.

View Article and Find Full Text PDF

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts.

View Article and Find Full Text PDF

2D monolayer electrocatalysts for CO electroreduction.

Nanoscale

January 2025

Institute of Energy Power Innovation, North China Electric Power University, 2 Benigno Road, Beijing 102206, P. R. China.

The electrocatalytic carbon dioxide reduction reaction (CORR) is an attractive method for converting atmospheric CO into value-added chemicals and fuels. In order to overcome the low efficiency and durability that hinder its practical application, a significant amount of research has been dedicated to designing novel catalysts at the nanoscale and even the atomic scale. Two-dimensional (2D) monolayer materials inherit the merits of both 2D materials and single-atom materials.

View Article and Find Full Text PDF

The two-dimensional lamellar materials disperse platinum sites and minimize noble-metal usage for fuel cells, while mass transport resistance at the stacked layers spurs device failure with a significant performance decline in membrane electrode assembly (MEA). Herein, we implant porous and rigid sulfonated covalent organic frameworks (COF) into the graphene-based catalytic layer for the construction of steric mass-charge channels, which highly facilitates the activity of oxygen reduction reactions in both the rotating disk electrode (RDE) measurements and MEA device tests. Specifically, the normalized mass activity is remarkably boosted by 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!