The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected (37.11%), (21.11%), and (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the gene accounting for approximately 4.78%, along with toxin genes such as the gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054999 | PMC |
http://dx.doi.org/10.3390/v16040535 | DOI Listing |
Methods Mol Biol
January 2025
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Molecular genetic tools such as CRISPR-Cas gene editing systems are invaluable for understanding gene and protein function and revealing the details of a pathogen's life and disease cycles. Here we present protocols for genome editing in Phytophthora infestans, an oomycete with global importance as a pathogen of potato and tomato. Using a vector system that expresses variants of Cas12a from Lachnospiraceae bacterium and its guide RNA from a unified transcript, we first present a method for editing genes through the non-homologous end-joining (NHEJ) pathway.
View Article and Find Full Text PDFVet Sci
December 2024
College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan Campus, Gobong-ro 79, Iksan 54596, Republic of Korea.
Bacterial skin infections, particularly pyoderma and otitis externa, are widespread in dogs, primarily caused by and species. This study evaluates the prevalence and types of bacterial pathogens in affected dogs in South Korea using a meta-analytical approach. Following the PRISMA guidelines, five electronic databases were searched for relevant studies published between 1990 and 2024.
View Article and Find Full Text PDFVet Sci
December 2024
Equine Clinical Diagnostic Centre, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
The prevalence of foodborne diseases has raised concerns due to the potential transmission of zoonotic bacterial pathogens through meat products. The objective of this study was to determine the occurrence and antimicrobial resistance (AMR) profiles of pathogenic bacteria in cooked donkey meat products from Beijing. Twenty-one cooked donkey meat samples were collected from different delis, subjected to homogenization, and analyzed for bacterial contamination.
View Article and Find Full Text PDFVet Sci
December 2024
Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada.
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc.
View Article and Find Full Text PDFVet Sci
November 2024
Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
Meagre () is one of the fast-growing species considered for sustainable aquaculture development along the Mediterranean and Eastern Atlantic coasts. The emergence of Systemic Granulomatosis (SG), a disease marked by multiple granulomas in various tissues, poses a significant challenge in meagre aquaculture. In the current study, we investigate the association of spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!