Synthesis, Spectroscopic Properties, and Metalation of 3-Alkoxybenziporphyrins.

Molecules

Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA.

Published: April 2024

A series of 5-alkoxy-1,3-benzenedicarbaldehydes and related dimers were prepared in three steps from dimethyl 5-hydroxyisophthalate. Acid catalyzed condensation of the dialdehydes with a tripyrrane dicarboxylic acid, followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, afforded good yields of 3-alkoxybenziporphyrins, although dimeric tetraaldehydes failed to give isolatable porphyrinoid products. Proton NMR spectroscopy gave no indication of an aromatic ring current, but addition of trifluoroacetic acid resulted in the formation of dications that exhibited weakly diatropic characteristics. Spectroscopic titration with TFA demonstrated that stepwise protonation took place, generating monocationic and dicationic species. 3-Alkoxybenziporphyrins reacted with nickel(II) or palladium(II) acetate to give the related nickel(II) or palladium(II) complexes. These stable organometallic derivatives showed increased diatropic properties that were most pronounced for the palladium(II) complexes. These unique porphyrinoids provide further insights into the properties of benziporphyrins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054816PMC
http://dx.doi.org/10.3390/molecules29081903DOI Listing

Publication Analysis

Top Keywords

nickelii palladiumii
8
palladiumii complexes
8
synthesis spectroscopic
4
spectroscopic properties
4
properties metalation
4
metalation 3-alkoxybenziporphyrins
4
3-alkoxybenziporphyrins series
4
series 5-alkoxy-13-benzenedicarbaldehydes
4
5-alkoxy-13-benzenedicarbaldehydes dimers
4
dimers prepared
4

Similar Publications

Acid catalyzed condensation of -alkyltripyrranes with trialdehydes derived from 1,3-cyclopentadiene or methyl-1,3-cyclopentadiene, followed by oxidation with aqueous ferric chloride solutions, gave 23-alkyl-21-carbaporphyrin-2-carbaldehydes in 22-27% yield together with weakly aromatic oxycarbaporphyrins. The carbaporphyrins reacted with palladium(II) acetate or nickel(II) acetate to give organometallic complexes but in both cases alkyl group migration took place to generate 21-alkyl derivatives. Although this type of reactivity had been observed previously for palladium complexes, this is the first time the phenomenon has been seen in nickel(II) carbaporphyrins.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines three types of hydrogen bonds in glycine and water complexes around metal ions, specifically focusing on interactions involving the NH and oxygen groups attached to a metal ion or the α-carbonyl oxygen.
  • - Different metal complexes of glycine (like cobalt, nickel, and copper) were analyzed using advanced computational methods to understand the nature and strength of these hydrogen bonds.
  • - Results indicate that electrostatic interactions are the strongest attractive force in these complexes, with complex charge having the most significant impact on the energy decomposition of the interactions, while other factors like metal oxidation and atomic number play a lesser role.
View Article and Find Full Text PDF

Homomolecular Triplet-Triplet Annihilation in Metalloporphyrin Photosensitizers.

J Phys Chem A

September 2024

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.

Metalloporphyrins are ubiquitous in their applications as triplet photosensitizers, particularly for promoting sensitized photochemical upconversion processes. In this study, bimolecular excited state triplet-triplet quenching kinetics, termed homomolecular triplet-triplet annihilation (HTTA), exhibited by the traditional triplet photosensitizers-zinc(II) tetraphenylporphyrin (ZnTPP), palladium(II) octaethylporphyrin (PdOEP), platinum(II) octaethylporphyrin (PtOEP), and platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP)─were revealed using conventional transient absorption spectroscopy. Nickel(II) tetraphenylporphyrin was used as a control sample as it is known to be rapidly quenched intramolecularly through ligand-field state deactivation and, therefore, cannot result in triplet-triplet annihilation (TTA).

View Article and Find Full Text PDF

Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4-phenyl-3-thiosemicarbazone (HL3), and -ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [Co(HL)(L)](NO) (1), [Co(HL)(L)](NO) (2), [Co(HL)(L)](NO) (3), [Fe(L)]NO (4), [Fe(HL)(L)](NO) (5), [Ni(L)]Cl (6), [Zn(L)Cl] (7) and [Pd(HL)Cl]Cl (8).

View Article and Find Full Text PDF

It has been suggested that the chelating agent 2-(2-(1-thiophene-2-yl) ethylidene) hydrazinyl) benzoic acid (TEHBA) be utilized to extract, separate and measure platinum(IV) by UV-visible spectrophotometry at the microgram level. Following 5 min of heating the reaction mixture in a water bath, Pt(IV)-TEHBA complex formed. This complex was formed in the presence of potassium iodide solution with a molar absorption coefficient 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!