Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms' () volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was conducted using gas chromatography-ion mobility spectrometry (GC-IMS) and sensory analysis. Sixty-three volatile compounds were identified in shiitake mushrooms. The fresh shiitake mushrooms were characterized by the highest values of raw mushroom odors. After UVC-LED treatment, the content of C8 alcohols decreased, especially that of 1-octen-3-ol, while the content of aldehydes increased, especially the content of nonanal and decanal. The score of fatty and green odors was enhanced. For fresh samples, the mushroom odors decreased and the mushroom-like odors weakened more sharply when treated in ethanol suspension than when treated with direct irradiation. The fruit odors were enhanced using direct UVC-LED irradiation for fresh mushroom samples and the onion flavor decreased. As for shiitake mushroom powder in ethanol suspension treated with UVC-LED, the sweaty and almond odor scores decreased and the vitamin D content in mushroom caps and stems reached 668.79 μg/g (dw) and 399.45 μg/g (dw), respectively. The results obtained from this study demonstrate that UVC-LED treatment produced rich-flavored, quality mushroom products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053434PMC
http://dx.doi.org/10.3390/molecules29081872DOI Listing

Publication Analysis

Top Keywords

uvc-led irradiation
12
shiitake mushrooms
12
parts shiitake
8
shiitake mushroom
8
ultraviolet light-emitting
8
gas chromatography-ion
8
chromatography-ion mobility
8
mushroom odors
8
uvc-led treatment
8
odors enhanced
8

Similar Publications

Background And Objectives: Plasmodium species are naturally transmitted by Anopheles mosquitos. The parasite infects red blood cells (RBCs) and can be transfused with blood products. In non-endemic areas, the main risk of infection arises from travellers coming back and people immigrating from malaria-endemic regions.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation has been widely utilized as a disinfection strategy to effectively eliminate various pathogens. The disinfection task achieves complete coverage of object surfaces by planning the motion trajectory of autonomous mobile robots and the UVC irradiation strategy. This introduces an additional layer of complexity to path planning, as every point on the surface of the object must receive a certain dose of irradiation.

View Article and Find Full Text PDF

Kinetics of inactivation of bacteria responsible for infections in hospitals using UV-LED.

Heliyon

May 2024

University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Calcada Martim de Freitas, 3000-456, Coimbra, Portugal.

Controlling the microbial load in the environment is crucial to prevent the spread of organisms. The continuous spread of nosocomial infections in hospital facilities and the emergence of the coronavirus (COVID-19) highlighted the importance of disinfection processes in health safety. This work aimed to evaluate the effectiveness of LED-based disinfection lamps on bacteria from the ESKAPEE group and virus phage in vitro inactivation to be applied in hospital environments and health facilities disinfection.

View Article and Find Full Text PDF

Further assessment of ultraviolet C light-emitting diode (UVC-LED) irradiation for influencing shiitake mushrooms' () volatile and sensory properties is needed. In this study, a comparison of UVC-LED irradiation treatment on the flavor profiles in various parts of shiitake mushrooms was conducted using gas chromatography-ion mobility spectrometry (GC-IMS) and sensory analysis. Sixty-three volatile compounds were identified in shiitake mushrooms.

View Article and Find Full Text PDF

Enhancing disinfection and microcontaminant removal by coupling LED driven UVC and UVA/photo-Fenton processes in continuous flow reactors.

Sci Total Environ

March 2024

Solar Energy Research Centre (CIESOL), Joint Centre University of Almeria-CIEMAT, Ctra. de Sacramento s/n, Almería 04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería 04120, Spain. Electronic address:

For the first time, the sequential combination of UVC-LED (276 nm) and photo-Fenton/UVA-LED (376 nm) process has been assessed in continuous flow mode for wastewater reclamation according to the new European Regulation for reuse in agricultural irrigation (EU 2020/741). The results show that it is possible to obtain water quality class B (Escherichia coli ≤ 100 CFU/100 mL) by UVC-LED irradiation alone, operating the system with a hydraulic residence time (HRT) of 6.5 min and liquid depth of 5 cm in the case of secondary effluents with low Escherichia coli load (8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!