Cerebral malaria (CM), a severe neurological pathology caused by infection, poses a significant global health threat and has a high mortality rate. Conventional therapeutics cannot cross the blood-brain barrier (BBB) efficiently. Therefore, finding effective treatments remains challenging. The novelty of the treatment proposed in this study lies in the feasibility of intranasal (IN) delivery of the nanostructured lipid carrier system (NLC) combining microRNA (miRNA) and artemether (ARM) to enhance bioavailability and brain targeting. The rational use of NLCs and RNA-targeted therapeutics could revolutionize the treatment strategies for CM management. This study can potentially address the challenges in treating CM, allowing drugs to pass through the BBB. The NLC formulation was developed by a hot-melt homogenization process utilizing 3% (/) precirol and 1.5% (/) labrasol, resulting in particles with a size of 94.39 nm. This indicates an effective delivery to the brain via IN administration. The results further suggest the effective intracellular delivery of encapsulated miRNAs in the NLCs. Investigations with an experimental cerebral malaria mouse model showed a reduction in parasitaemia, preservation of BBB integrity, and reduced cerebral haemorrhages with the ARM+ miRNA-NLC treatment. Additionally, molecular discoveries revealed that nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and Interleukin-6 (IL-6) levels were reduced in the treated groups in comparison to the CM group. These results support the use of nanocarriers for IN administration, offering a viable method for mitigating CM through the increased bioavailability of therapeutics. Our findings have far-reaching implications for future research and personalized therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053970PMC
http://dx.doi.org/10.3390/ph17040466DOI Listing

Publication Analysis

Top Keywords

cerebral malaria
12
nanostructured lipid
8
lipid carrier
8
pharmacokinetics pharmacodynamics
4
pharmacodynamics nanostructured
4
carrier co-encapsulating
4
co-encapsulating artemether
4
artemether mirna
4
mirna mitigating
4
cerebral
4

Similar Publications

Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.

View Article and Find Full Text PDF
Article Synopsis
  • Malaria has surged in sub-Saharan Africa due to disruptions from the Covid-19 pandemic, leading to severe cases like cerebral malaria and acute kidney injury.
  • A 22-year-old male from Chad, who presented with confusion and had a history of travel to an endemic area, was initially misdiagnosed but later confirmed to have malaria with severe symptoms.
  • Successful treatment included intravenous artesunate and hemodialysis, and the patient was discharged after 20 days, highlighting the need for quick diagnosis and effective management of malaria complications.
View Article and Find Full Text PDF

malaria affects millions of people in certain regions of the world, with neurological involvement and/or cerebral malaria as potential manifestations. Brain magnetic resonance imaging (MRI) abnormalities have been well-documented in cerebral malaria. However, MRI abnormalities in non-cerebral malaria, especially in neurologically asymptomatic patients, are not well understood and have been less frequently reported, especially in non-endemic regions.

View Article and Find Full Text PDF

The effect of bitter honey against cerebral malaria-induced inflammasome cell death: network pharmacology-based in silico evaluation.

Biomed Khim

December 2024

Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria.

Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. The biological and physiological links between CM, inflammation, and inflammasome, point to the complexity of its pathology. Resistance to available and affordable drugs, worsening economic crisis, and urgent need for integration of orthodox with traditional/alternative medicine, actualized the search for sustainable pharmacotherapy.

View Article and Find Full Text PDF

Oxidative stress is a pivotal factor in the pathogenesis of malaria, contributing to the development of conditions such as anemia, respiratory complications, and cerebral malaria. To counteract oxidative damage, we evaluated the effects of vitamin E (α-TOH) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) supplementation on parasitemia progression, mortality rate, and blood-brain barrier (BBB) permeability in Plasmodium berghei ANKA-infected mice. The mice were divided into four groups: a control group (untreated and uninfected), an infected group (Pb), a TPGS + Pb group, and an α-TOH + Pb group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!