Identification of Metabolites from Leaves and Stem Extract, and In Vitro and In Silico Antibacterial Activity against Food Pathogens.

Pharmaceuticals (Basel)

Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Published: March 2024

The plant produced powerful secondary metabolites and showed strong antibacterial activities against food-spoiling bacterial pathogens. The present study aimed to evaluate antibacterial activities and to identify metabolites from the leaves and stems of using NMR spectroscopy. The major metabolites likely to be observed in aqueous extraction were 2,3-butanediol, quinic acids, vindoline, chlorogenic acids, vindolinine, secologanin, and quercetin in the leaf and stem of the . The aqueous extracts from the leaves and stems of this plant have been observed to be most effective against food spoilage bacterial strains, followed by methanol and hexane. However, leaf extract was observed to be most significant in terms of the content and potency of metabolites. The minimum inhibitory concentration (20 µg/mL) and bactericidal concentrations (35 g/mL) of leaf extract were observed to be significant as compared to the ampicillin. Molecular docking showed that chlorogenic acid and vindolinine strongly interacted with the bacterial penicillin-binding protein. The docking energies of chlorogenic acid and vindolinine also indicated that these could be used as food preservatives. Therefore, the observed metabolite could be utilized as a potent antibacterial compound for food preservation or to treat their illness, and further research is needed to perform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054124PMC
http://dx.doi.org/10.3390/ph17040450DOI Listing

Publication Analysis

Top Keywords

metabolites leaves
8
antibacterial activities
8
leaves stems
8
leaf extract
8
extract observed
8
chlorogenic acid
8
acid vindolinine
8
observed
5
identification metabolites
4
leaves stem
4

Similar Publications

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

Introduction: Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.

Methods: The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus Xylaria ellisii isolated from leaf tissues of the Acorus calamus Linn plant.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

: , or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!