Metalenses, as a new type of planar optical device with flexible design, play an important role in miniaturized and integrated optical devices. Propagation phase-based metalenses, known for their low loss and extensive design flexibility, are widely utilized in optical imaging and optical communication. However, fabrication errors introduced by thin-film deposition and etching processes inevitably result in variations in the height of the metalens structure, leading to the fabricated devices not performing as expected. Here, we introduce a reflective TiO metalens based on the propagation phase. Then, the relationship between the height variation and the performance of the metalens is explored by using the maximum phase error. Our results reveal that the height error of the unit structure affects the phase rather than the amplitude. The focusing efficiency of our metalens exhibits robustness to structural variations, with only a 5% decrease in focusing efficiency when the height varies within ±8% of the range. The contents discussed in this paper provide theoretical guidance for the unit design of the propagation phase-based metalens and the determination of its allowable fabrication error range, which is of great significance for low-cost and high-efficiency manufacturing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051892 | PMC |
http://dx.doi.org/10.3390/mi15040540 | DOI Listing |
Micromachines (Basel)
April 2024
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Metalenses, as a new type of planar optical device with flexible design, play an important role in miniaturized and integrated optical devices. Propagation phase-based metalenses, known for their low loss and extensive design flexibility, are widely utilized in optical imaging and optical communication. However, fabrication errors introduced by thin-film deposition and etching processes inevitably result in variations in the height of the metalens structure, leading to the fabricated devices not performing as expected.
View Article and Find Full Text PDFA circularly polarized (CP) beam propagating in a rotated anisotropic material acquires an additional phase delay proportional to the local rotation angle. This phase delay is a particular kind of geometric phase, the Pancharatnam-Berry phase (PBP), stemming from the path of the beam polarization on the Poincaré sphere. A transverse gradient in the geometric phase can thus be imparted by inhomogeneous rotation of the material, with no transverse gradient in the dynamic phase.
View Article and Find Full Text PDFThere are various performance advantages when using temporal phase-based data encoding and coherent detection with a local oscillator (LO) in free-space optical (FSO) links. However, atmospheric turbulence can cause power coupling from the Gaussian mode of the data beam to higher-order modes, resulting in significantly degraded mixing efficiency between the data beam and a Gaussian LO. Photorefractive crystal-based self-pumped phase conjugation has been previously demonstrated to "automatically" mitigate turbulence with limited-rate free-space-coupled data modulation (e.
View Article and Find Full Text PDFbioRxiv
August 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
Understanding the spatiotemporal dynamics of neural signal propagation is fundamental to unraveling the complexities of brain function. Emerging evidence suggests that cortico-cortical evoked potentials (CCEPs) resulting from single-pulse electrical stimulation may be used to characterize the patterns of information flow between and within brain networks. At present, the basic spatiotemporal dynamics of CCEP propagation cortically and subcortically are incompletely understood.
View Article and Find Full Text PDFTomography
February 2023
Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy.
Uncertainty assessment is a fundamental step in quantitative magnetic resonance imaging because it makes comparable, in a strict metrological sense, the results of different scans, for example during a longitudinal study. Magnetic resonance-based electric properties tomography (EPT) is a quantitative imaging technique that retrieves, non-invasively, a map of the electric properties inside a human body. Although EPT has been used in some early clinical studies, a rigorous experimental assessment of the associated uncertainty has not yet been performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!