Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052387PMC
http://dx.doi.org/10.3390/mi15040537DOI Listing

Publication Analysis

Top Keywords

axial resolution
12
infrared microscope
8
binary axicon
8
axicon fabricated
8
fabricated barium
8
barium fluoride
8
focal depth
8
extending depth
4
depth focus
4
focus infrared
4

Similar Publications

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Purpose: Integrated MRI and linear accelerator systems (MR-Linacs) provide superior soft tissue contrast, and the capability of adapting radiotherapy plans to changes in daily anatomy. In this dataset, serial MRIs of the abdomen of patients undergoing radiotherapy were collected and the luminal gastro-intestinal tract was segmented to support an online segmentation algorithm competition. This dataset may be further utilized by radiation oncologists, medical physicists, and data scientists to further improve auto segmentation algorithms.

View Article and Find Full Text PDF

A Versatile Drift-Free Super-Resolution Imaging Method via Oblique Bright-Field Correlation.

Adv Sci (Weinh)

December 2024

Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.

High-resolution optical microscopy, particularly super-resolution localization microscopy, requires precise real-time drift correction to maintain constant focus at nanoscale precision during the prolonged data acquisition. Existing methods, such as fiducial marker tracking, reflection monitoring, and bright-field image correlation, each provide certain advantages but are limited in their broad applicability. In this work, a versatile and robust drift correction technique is presented for single-molecule localization-based super-resolution microscopy.

View Article and Find Full Text PDF

In Vivo Neurodynamics Mapping via High-Speed Two-Photon Fluorescence Lifetime Volumetric Projection Microscopy.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Monitoring the morphological and biochemical information of neurons and glial cells at high temporal resolution in three-dimensional (3D) volumes of in vivo is pivotal for understanding their structure and function, and quantifying the brain microenvironment. Conventional two-photon fluorescence lifetime volumetric imaging speed faces the acquisition speed challenges of slow serial focal tomographic scanning, complex post-processing procedures for lifetime images, and inherent trade-offs among contrast, signal-to-noise ratio, and speed. This study presents a two-photon fluorescence lifetime volumetric projection microscopy using an axially elongated Bessel focus and instant frequency-domain fluorescence lifetime technique, and integrating with a convolutional network to enhance the imaging speed for in vivo neurodynamics mapping.

View Article and Find Full Text PDF

Elucidating subcellular architecture and dynamics at isotropic 100-nm resolution with 4Pi-SIM.

Nat Methods

December 2024

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.

Three-dimensional structured illumination microscopy (3D-SIM) provides excellent optical sectioning and doubles the resolution in all dimensions compared with wide-field microscopy. However, its much lower axial resolution results in blurred fine details in that direction and overall image distortion. Here we present 4Pi-SIM, a substantial revamp of IS that synergizes 3D-SIM with interferometric microscopy to achieve isotropic optical resolution through interference in both the illumination and detection wavefronts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!