In piezoelectric drive, resonant drive is an important driving mode in which the external elastic force and electric drive signal are the key factors. In this paper, the effects of the coupling of external elastic force and liquid parameters with the structure on the vibrator resonance frequency and liquid drive are analyzed by numerical simulation. The fluid-structure coupling model for numerical analysis of the elastic force was established, the principle of microdroplet generation and the coupling method of the elastic force were studied, and the changes in the resonant frequency and mode induced by the changes in the liquid parameters in different cavities were analyzed. Through the coupled simulation and calculation of the pressure and deformation of the cavity, the laser vibration measurement test was carried out to test the effect of the vibration mode analysis. The driving model of the fluid jet driven by the elastic force on the piezoelectric drive was further established. The changing shape of the fluid jet under different elastic forces was analyzed, and the influence law of the external elastic force on the change in the droplet separation was determined. It provides reference support for further external microcontrol of droplet motion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052154 | PMC |
http://dx.doi.org/10.3390/mi15040523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!