Recent Progress in Semitransparent Organic Solar Cells: Photoabsorbent Materials and Design Strategies.

Micromachines (Basel)

Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.

Published: April 2024

The increasing energy demands of the global community can be met with solar energy. Solution-processed organic solar cells have seen great progress in power conversion efficiencies (PCEs). Semitransparent organic solar cells (ST-OSCs) have made enormous progress in recent years and have been considered one of the most promising solar cell technologies for applications in building-integrated windows, agricultural greenhouses, and wearable energy resources. Therefore, through the synergistic efforts of transparent electrodes, engineering in near-infrared photoabsorbent materials, and device engineering, high-performance ST-OSCs have developed, and PCE and average visible transmittance reach over 10% and 40%, respectively. In this review, we present the recent progress in photoabsorbent material engineering and strategies for enhancing the performance of ST-OSCs to help researchers gain a better understanding of structure-property-performance relationships. To conclude, new design concepts in material engineering and outlook are proposed to facilitate the further development of high-performance ST-OSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051828PMC
http://dx.doi.org/10.3390/mi15040493DOI Listing

Publication Analysis

Top Keywords

organic solar
12
solar cells
12
semitransparent organic
8
photoabsorbent materials
8
high-performance st-oscs
8
material engineering
8
solar
5
progress
4
progress semitransparent
4
cells photoabsorbent
4

Similar Publications

In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.

View Article and Find Full Text PDF

Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A-DA'D-A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C-H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Functionalized UiO-66 induces shallow electron traps in heterojunctions with InN for enhanced photocathodic water splitting.

J Colloid Interface Sci

January 2025

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 China. Electronic address:

Indium nitride (InN) exhibited significant potential as a photoelectrode material for photoelectrochemical (PEC) water splitting, attributed to its superior light absorption, high electron mobility, and direct bandgap. However, its practical application was constrained by rapid carrier recombination occurring within the bulk and at the surface. To address these limitations, researchers developed InN/UiO-66 heterojunction photoelectrodes, which markedly enhanced PEC water splitting for hydrogen production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!