MEMS accelerometers are significantly impacted by temperature and noise, leading to a considerable compromise in their accuracy. In response to this challenge, we propose a parallel denoising and temperature compensation fusion algorithm for MEMS accelerometers based on RLMD-SE-TFPF and GRU-attention. Firstly, we utilize robust local mean decomposition (RLMD) to decompose the output signal of the accelerometer into a series of product function (PF) signals and a residual signal. Secondly, we employ sample entropy (SE) to classify the decomposed signals, categorizing them into noise segments, mixed segments, and temperature drift segments. Next, we utilize the time-frequency peak filtering (TFPF) algorithm with varying window lengths to separately denoise the noise and mixed signal segments, enabling subsequent signal reconstruction and training. Considering the strong inertia of the temperature signal, we innovatively introduce the accelerometer's output time series as the model input when training the temperature compensation model. We incorporate gated recurrent unit (GRU) and attention modules, proposing a novel GRU-MLP-attention model (GMAN) architecture. Simulation experiments demonstrate the effectiveness of our proposed fusion algorithm. After processing the accelerometer output signal through the RLMD-SE-TFPF denoising algorithm and the GMAN temperature drift compensation model, the acceleration random walk is reduced by 96.11%, with values of 0.23032 g/h/Hz for the original accelerometer output signal and 0.00895695 g/h/Hz for the processed signal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051997 | PMC |
http://dx.doi.org/10.3390/mi15040483 | DOI Listing |
Nanomaterials (Basel)
February 2025
Facultad de Ciencias Básicas, Departamento de Física y Electrónica, Universidad de Córdoba, Monteria 230002, Colombia.
We investigated the hysteresis, pseudo-critical, and compensation behaviors of a quasi-spherical FeCo alloy nanoparticle (2 nm in diameter) using Monte Carlo simulations with thermal bath-type algorithms and a 3D mixed Ising model. The nanostructure was modeled in a body-centered cubic lattice (BCC) through the following configurations: spin S=3/2 for Co and Q=2 for Fe. These simulations reveal that, under the influence of crystal and magnetic fields, the nanoparticle exhibits compensation phenomena, exchange bias, and pseudo-critical temperatures.
View Article and Find Full Text PDFCurrently, static fluorescent anti-counterfeiting technology struggles to cope with the increasingly sophisticated counterfeiting techniques, making the dynamic multimode regulation scheme an urgent necessity. Herein, Sm3+ mono-/co-doped LiTaO3 (LTO) phosphors are prepared by high temperature solid state method. Under 254 nm excitation, the emission chromaticity of LTO: Tb3+, Sm3+ is modulated from green to yellow by increasing Sm3+ content due to Tb3+ → Sm3+ energy transfer.
View Article and Find Full Text PDFBMC Genomics
March 2025
DPIRD Marine Fish, Aquaculture Research and Development, Fremantle, WA, Australia.
Background: Changing ocean temperatures are already causing declines in populations of marine organisms. Predicting the capacity of organisms to adjust to the pressures posed by climate change is a topic of much current research effort, particularly for species we farm or harvest. To explore one measure of phenotypic plasticity, the physiological compensations in response to heat stress as might be experienced in a marine heatwave, we exposed Yellowtail Kingfish (Seriola lalandi) to sublethal heat stress, and used the transcriptome in gill and muscle, benchmarked against heat shock proteins and oxidative stress indicators, to characterise the acute heat stress response (6 h after the initiation of stress), and the physiological compensation to that response (24 and 72 h after the initiation of stress).
View Article and Find Full Text PDFPlant Physiol Biochem
March 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China. Electronic address:
The R2R3-MYB transcription factors constitute a critical family involved in a variety of biological processes. They have been found to be essential participants in flavonoid biosynthesis in various plants. Bletilla striata (Thunb.
View Article and Find Full Text PDFPhys Rev Lett
February 2025
Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany.
In the violent postmerger of binary neutron-star mergers strong oscillations are present that impact the emitted gravitational-wave (GW) signal. The frequencies, temperatures, and densities involved in these oscillations allow for violations of the chemical equilibrium promoted by weak interactions, thus leading to a nonzero bulk viscosity that can impact dynamics and GW signals. We present the first simulations of binary neutron-star mergers employing the self-consistent and second-order formulation of the equations of relativistic hydrodynamics for dissipative fluids proposed by Müller, Israel, and Stewart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!